Skip to main content

Advertisement

Log in

Parkinson’s disease and the non-motor symptoms: hyposmia, weight loss, osteosarcopenia

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Non-motor symptoms (NMSs) are common in Parkinson’s disease (PD) and can precede, sometimes for several years. NMSs include, other than gastrointestinal symptoms like constipation and dysphagia, also hyposmia, weight loss and osteosarcopenia. These three NMSs seem to be inter-related and affect patients’ health and quality of life. Unfortunately, patients with these symptoms usually are not initially seen by a neurologist, and by the time they are consulted, nearly ~ 80% of the dopaminergic neurons in the substantia nigra have died. To date, no guidelines exist for screening, assessment and management of NMSs in general. A better understanding of these specific NMSs, likely in the context of others, will make it possible to approach and optimise the treatment of the motor symptoms thereby enhancing the welfare of PD patients. Identifying the NMSs could be very helpful, and among them, hyposmia, weight loss and osteosarcopenia may play an important role in solving the limitations in the diagnosis of PD. A strict collaboration between general practitioners, clinicians, geriatricians and neurologists can be one approach towards the diagnosis of pre-PD. Waiting until the motor symptoms develop and the patient is finally visited by the neurologist could be too late, considering the catastrophic prognosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perez-Pardo P, Kliest T, Dodiya HB et al (2017) The gut-brain axis in Parkinson's disease: possibilities for food-based therapies. Eur J Pharmacol 817:86–95

    CAS  PubMed  Google Scholar 

  2. Shidfar F, Babaii Darabkhani P, Yazdanpanah L et al (2016) Assessment of nutritional status in patients with Parkinson's disease and its relationship with severity of the disease. Med J Islam Repub Iran 30:454

    PubMed  PubMed Central  Google Scholar 

  3. Mehta SH, Adler CH (2016) Advances in biomarker research in Parkinson's disease. Curr Neurol Neurosci 1:7. https://doi.org/10.1007/s11910-015-0607-4

    Article  CAS  Google Scholar 

  4. Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386:896–912

    CAS  PubMed  Google Scholar 

  5. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non- motor features of Parkinson disease. Nat Rev Neurosci 18:435–450

    CAS  PubMed  Google Scholar 

  6. Rodríguez-Violante M, Zerón-Martínez R, Cervantes-Arriaga A et al (2017) Who can diagnose Parkinson's disease first? Role of pre-motor symptoms. Arch Med Res 48:221–227

    PubMed  Google Scholar 

  7. Crepaldi G, Maggi S (2005) Sarcopenia and osteoporosis: a hazardous duet. J Endocrinol Investig 28:66–68

    CAS  Google Scholar 

  8. Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci 14:223–236

    PubMed  Google Scholar 

  9. Klingelhoefer L, Reichmann H (2017) The gut and nonmotor symptoms in Parkinson's disease. Int Rev Neurobiol 134:787–809

    PubMed  Google Scholar 

  10. Xiao Q, Chen S, Le W (2014) Hyposmia: a possible biomarker of Parkinson's disease. Neurosci Bull 30:134–140

    CAS  PubMed  Google Scholar 

  11. Kashihara K (2006) Weight loss in Parkinson's disease. J Neurol 253:38–41

    Google Scholar 

  12. Chen H, Zhang SM, Hernán MA et al (2003) Weight loss in Parkinson's disease. Ann Neurol 53:676–679

    PubMed  Google Scholar 

  13. Sheard JM, Ash S, Silburn PA et al (2011) Prevalence of malnutrition in Parkinson's disease: a systematic review. Nutr Rev 69:520–532. https://doi.org/10.1111/j.1753-4887.2011.00413.x

    Article  PubMed  Google Scholar 

  14. Prell T, Perner C (2018) Disease specific aspects of malnutrition in neurogeriatric patients. Front Aging Neurosci 10:80. https://doi.org/10.3389/fnagi.2018.00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torsney KM, Noyce AJ, Doherty KM et al (2014) Bone health in Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 85:1159–1166

    PubMed  Google Scholar 

  16. Drey M, Hasmann SE, Krenovsky JP et al (2017) Associations between early markers of Parkinson's disease and sarcopenia. Aging Neurosci Front. https://doi.org/10.3389/fnagi.2017.00053

    Article  Google Scholar 

  17. Tan AH, Hew YC, Lim SY et al (2018) Altered body composition, sarcopenia, frailty, and their clinico-biological correlates, in Parkinson's disease. Parkinsonism Relat Disord 56:58–64. https://doi.org/10.1016/j.parkreldis.2018.06.020

    Article  PubMed  Google Scholar 

  18. Le W, Dong J, Li S et al (2017) Can biomarkers help the early diagnosis of Parkinson's disease? Neurosci Bull 33:535–542

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ansari KA, Johnson A (1975) Olfactory function in patients with Parkinson's disease. J Chronic Dis 28:493–497

    CAS  PubMed  Google Scholar 

  20. Doty RL (2005) Clinical studies of olfaction. Chem Senses 30:i207–209

    PubMed  Google Scholar 

  21. Ottaviano G, Frasson G, Nardello E et al (2016) Olfaction deterioration in cognitive disorders in the elderly. Aging Clin Exp Res 28:37–45. https://doi.org/10.1007/s40520-015-0380-x

    Article  PubMed  Google Scholar 

  22. Braak H, Rüb U, Gai WP et al (2003) Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    CAS  PubMed  Google Scholar 

  23. Witt M, Bormann K, Gudziol V et al (2009) Biopsies of olfactory epithelium in patients with Parkinson's disease. Mov Disord 24:906–914

    PubMed  Google Scholar 

  24. Dall'Antonia I, Šonka K, Dušek P (2018) Olfaction and colour vision: what can they tell us about Parkinson's disease? Prague Med Rep 119:85–96

    PubMed  Google Scholar 

  25. Oh YS, Kim JS, Hwang EJ et al (2018) Striatal dopamine uptake and olfactory dysfunction in patients with early Parkinson's disease. Parkinsonism Relat Disord 56:47–51

    PubMed  Google Scholar 

  26. Hummel T, Sekinger B, Wolf SR et al (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52

    CAS  PubMed  Google Scholar 

  27. Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson's disease. J Neurol Neurosurg Psychiatry 62:436–446

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarakad A, Jankovic J (2017) Anosmia and Ageusia in Parkinson's disease. Int Rev Neurobiol 133:541–556

    PubMed  Google Scholar 

  29. Iannilli E, Stephan L, Hummel T (2017) Olfactory impairment in Parkinson's disease is a consequence of central nervous system decline. J Neurol 264:1236–1246

    PubMed  Google Scholar 

  30. Berendse HW, Roos DS, Raijmakers P et al (2011) Motor and non-motor correlates of olfactory dysfunction in Parkinson's disease. J Neurol Sci 310:21–24

    PubMed  Google Scholar 

  31. St Louis EK, Boeve AR, Boeve BF (2017) REM sleep behavior disorder in Parkinson's disease and other synucleinopathies. Mov Disord 32:645–658

    CAS  PubMed  Google Scholar 

  32. Haehner A, Hummel T, Reichmann H (2009) Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev Neurother 9:1773–1779

    CAS  PubMed  Google Scholar 

  33. Sui X, Zhou C, Li J et al (2019) Hyposmia as a predictive marker of Parkinson's disease: a systematic review and meta-analysis. Biomed Res Int 19:3753786. https://doi.org/10.1155/2019/3753786

    Article  Google Scholar 

  34. Gjerde KV, Müller B, Skeie GO et al (2018) Hyposmia in a simple smell test is associated with accelerated cognitive decline in early Parkinson's disease. Acta Neurol Scand 138:508–514

    CAS  PubMed  Google Scholar 

  35. Welge-Lüssen A (2009) Ageing, neurodegeneration, and olfactory and gustatory loss. B-ENT 5:129–132

    PubMed  Google Scholar 

  36. Mueller A, Reichman H, Livermore A et al (2002) Olfactory function in idiopathic Parkinson’s disease: results from cross-sectional studies in IPD patients and long-term follow-up of de-novo IPD patients. J Neural Transm 109:805–811

    Google Scholar 

  37. Wenning GK, Shephard B, Hawkes C et al (1995) Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand 91:247–250

    CAS  PubMed  Google Scholar 

  38. Whitcroft KL, Cuevas M, Haehner A et al (2017) Patterns of olfactory impairment reflect underlying disease etiology. Laryngoscope 127:291–295

    PubMed  Google Scholar 

  39. Leonhardt B, Tahmasebi R, Jagsch R et al (2019) Awareness of olfactory dysfunction in Parkinson's disease. Neuropsychology 33:633–641. https://doi.org/10.1037/neu0000544

    Article  PubMed  Google Scholar 

  40. Imoscopi A, Inelmen EM, Sergi G et al (2012) Taste loss in the elderly: epidemiology, causes and consequences. Aging Clin Exp Res 24:570–579

    PubMed  Google Scholar 

  41. Inelmen EM, Sergi G (2006) Biochemical parameters of nutrition—cachexia and wasting: a modern approach. Springer, New York, pp 59–72

    Google Scholar 

  42. Cecchini MP, Fasano A, Boschi F et al (2015) Taste in Parkinson's disease. J Neurol 262:806–813

    PubMed  Google Scholar 

  43. Mischley LK (2017) Nutrition and nonmotor symptoms of Parkinson's disease. Int Rev Neurobiol 134:1143–1161

    PubMed  Google Scholar 

  44. Fink HA, Kuskowski MA, Orwoll ES et al (2005) Association between Parkinson's disease and low bone density and falls in older men: the osteoporotic fractures in men study. J Am Geriatr Soc 53:1559–1564. https://doi.org/10.1111/j.1532-5415.2005.53464.x

    Article  PubMed  Google Scholar 

  45. Genever RW, Downes TW, Medcalf P (2005) Fracture rates in Parkinson's disease compared with age- and gender-matched controls: a retrospective cohort study. Age Ageing 34:21–24. https://doi.org/10.1093/ageing/afh203

    Article  PubMed  Google Scholar 

  46. Schneider JL, Fink HA, Ewing SK et al (2008) The association of Parkinson's disease with bone mineral density and fracture in older women. Osteoporos Int 19:1093–1097. https://doi.org/10.1007/s00198-008-0583-5

    Article  CAS  PubMed  Google Scholar 

  47. Wehren LE, Hawkes WG, Orwig DL et al (2003) Gender differences in mortality after hip fracture: the role of infection. J Bone Miner Res 18:2231–2237. https://doi.org/10.1359/jbmr.2003.18.12.2231

    Article  PubMed  Google Scholar 

  48. Wills AM, Pérez A, Wang J et al (2016) Association between change in body mass index, unified Parkinson's disease rating scale scores, and survival among persons with Parkinson disease: secondary analysis of longitudinal data from NINDS exploratory trials in parkinson disease long-term study 1. JAMA Neurol 73:321–328. https://doi.org/10.1001/jamaneurol.2015.426

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kim HJ, Oh ES, Lee JH et al (2012) Relationship between changes of body mass index (BMI) and cognitive decline in Parkinson's disease (PD). Arch Gerontol Geriatr 55:70–72. https://doi.org/10.1016/j.archger.2011.06.022

    Article  PubMed  Google Scholar 

  50. Nakamura T, Suzuki M, Ueda M et al (2017) Lower body mass index is associated with orthostatic hypotension in Parkinson's disease. J Neurol Sci 372:14–18. https://doi.org/10.1016/j.jns.2016.11.027

    Article  PubMed  Google Scholar 

  51. Cheshire WP Jr, Wszolek ZK (2005) Body mass index is reduced early in Parkinson's disease Park. Relat. Disord 11:35–38

    Google Scholar 

  52. Pak K, Shin HK, Kim EJ et al (2018) Weight loss is associated with rapid striatal dopaminergic degeneration in Parkinson's disease. Parkinsonism Relat Disord 51:67–72

    PubMed  Google Scholar 

  53. Capecci M, Petrelli M, Emanuelli B et al (2013) Rest energy expenditure in Parkinson's disease: role of disease progression and dopaminergic therapy. Parkinsonism Relat Disord 19:238–241

    PubMed  Google Scholar 

  54. Fiszer U, Michałowska M, Baranowska B et al (2010) Leptin and ghrelin concentrations and weight loss in Parkinson's disease. Acta Neurol Scand 121:230–236. https://doi.org/10.1111/j.1600-0404.2009.01185.x

    Article  CAS  PubMed  Google Scholar 

  55. Bayliss JA, Andrews ZB (2013) Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabolic neuroprotection. Ther Adv Endocrinol Metab 4:25–36. https://doi.org/10.1177/2042018813479645]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fasano A, Visanji NP, Liu LWC et al (2015) Pfeiffer gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol 14:625–639

    CAS  PubMed  Google Scholar 

  57. Johanson JF, Kralstein J (2007) Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther 25:599–608. https://doi.org/10.1111/j.1365-2036.2006.03238.x

    Article  CAS  PubMed  Google Scholar 

  58. Potulska A, Friedman A, Królicki L et al (2003) Swallowing disorders in Parkinson’s disease. Parkinsonism Relat Disord 9:349–353. https://doi.org/10.1016/S1353-8020(03)00045-2

    Article  PubMed  Google Scholar 

  59. Roos DS, Oranje OJM, Freriksen AFD et al (2018) Flavor perception and the risk of malnutrition in patients with Parkinson's disease. J Neural Transm 125:925–930

    PubMed  Google Scholar 

  60. Aarsland D, Beyer MK, Kurz MW (2008) Dementia in Parkinson’s disease. Curr Opin Neurol 21:676–682. https://doi.org/10.1097/WCO.0b013e3283168df0

    Article  PubMed  Google Scholar 

  61. Dennison EM, Compston JE, Flahive J et al (2012) Effect of co-morbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone 50:1288–1293

    PubMed  PubMed Central  Google Scholar 

  62. van den Bos F, Speelman AD, Samson M et al (2013) Parkinson's disease and osteoporosis. Age Ageing 42:156–162

    PubMed  Google Scholar 

  63. Kamanli A, Ardicoglu O, Ozgocmen S et al (2008) Bone mineral density in patients with Parkinson’s disease. Aging Clin Exp Res 20:277–279

    PubMed  Google Scholar 

  64. Vaserman N (2005) Parkinson's disease and osteoporosis. Jt Bone Spine 72:282–288

    Google Scholar 

  65. Invernizzi M, Carda S, Viscontini GS et al (2009) Osteoporosis in Parkinson's disease. Parkinsonism Relat Disord 15:339–346

    PubMed  Google Scholar 

  66. Dargent-Molina P, Poitiers F, Bréart G et al (2000) In elderly women weight is the best predictor of a very low bone mineral density: evidence from the EPIDOS study. Osteoporos Int 11:881–888

    CAS  PubMed  Google Scholar 

  67. Bezza A, Bezza Z, Ouzzif H et al (2008) Prevalence and risk factors of osteoporosis in patients with Parkinson's disease. Rheumatol Int 28:1205–1209

    CAS  PubMed  Google Scholar 

  68. Vetrano DL, Pisciotta MS, Laudisio A et al (2018) Sarcopenia in Parkinson disease: comparison of different criteria and association with disease severity. J Am Med Dir Assoc 19:523–527

    PubMed  Google Scholar 

  69. Yazar T, Yazar HO, Zayimoğlu E et al (2018) Incidence of sarcopenia and dynapenia according to stage in patients with idiopathic Parkinson's disease. Neurol Sci 39:1415–1421

    PubMed  Google Scholar 

  70. Scalzo P, Kümmer A, Cardoso F et al (2010) Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 468:56–58. https://doi.org/10.1016/j.neulet.2009.10.062

    Article  CAS  PubMed  Google Scholar 

  71. Cesari M, Penninx BWJH, Pahor M et al (2004) Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 59:242–248. https://doi.org/10.1093/gerona/59.3.M242

    Article  PubMed  Google Scholar 

  72. Caviness JN, Smith BE, Stevens JC et al (2002) Motor unit number estimates in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 8:161–164. https://doi.org/10.1016/S1353-8020(01)00007-4

    Article  CAS  PubMed  Google Scholar 

  73. Drey M, Krieger B, Sieber CC et al (2014) Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 15:435–439. https://doi.org/10.1016/j.jamda.2014.02.002

    Article  PubMed  Google Scholar 

  74. Guigoz Y, Vellas B, Garry PJ (1996) Assessing the nutritional status of the elderly: the mini nutritional assessment as part of the geriatric evaluation. Nutr Rev 54:S59–65

    CAS  PubMed  Google Scholar 

  75. Sergi G, Trevisan C, Veronese N et al (2016) Imaging of sarcopenia. Eur J Radiol 85:1519–1524

    PubMed  Google Scholar 

  76. https://www.sheffield.ac.uk/FRAX/index.aspx. Accessed 18 Jan 2020

  77. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    PubMed  PubMed Central  Google Scholar 

  78. Sergi G, De Rui M, Stubbs B et al (2017) Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res 29:591–597

    PubMed  Google Scholar 

  79. Pigozzo S, Inelmen EM, Paola Lucato P et al (2017) Vitamina D: aspetti clinici e di laboratorio. Biochim Clin 41:12–22

    Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina De Rui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rui, M., Inelmen, E.M., Trevisan, C. et al. Parkinson’s disease and the non-motor symptoms: hyposmia, weight loss, osteosarcopenia. Aging Clin Exp Res 32, 1211–1218 (2020). https://doi.org/10.1007/s40520-020-01470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-020-01470-x

Keywords

Navigation