Skip to main content

Advertisement

Log in

Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α

  • Original Article
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Purpose

An imbalance in the production of adipokines and myokines impairs the energy expenditure, increases adipocyte and develops metabolic pathologies. Physical exercise is able to regulate the secretion of myokines and adipokines. The present study considers the metabolic cross talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α.

Methods

A sample of 32 male Wistar rats (8 weeks old with mean weight 250 ± 55 g) were divided into four groups randomly: control of base (CO), control of 8 weeks (CO8w), moderate-intensity continuous training (MICT), and high-intensity interval training (HIIT). The rats were fed with standard chow diet. The CO group was killed at the start of the study and the CO8w group was kept alive for the same time as the experimental groups, but did not participate in any exercise. MICT and HIIT groups for 8 weeks were placed under the moderate-intensity continuous training (15–60 min, with speed of 15–30 m/min) and high-intensity interval training (8–4 intense period for 1 min, with speed of 28–55 m/min, with 3–7 slow-intensity period for 1 min, with a speed of 12–30 m/min) for 8 weeks, respectively. To measure the levels of serum irisin, nesfatin, and resistin the ELISA method was used and real-time PCR method was used to evaluate the relative expression of soleus PGC-1α gene mRNA.

Results

The levels of irisin and nesfatin significantly increased in the HIIT compared with control groups (p = 0.001). Resistin values in both training groups showed a significant decrease compared to the control groups (p = 0.005). The level of PGC-1α gene expression in both HIIT and MICT groups was significantly increased in comparison with the control groups (p = 0.001).

Discussion

The results showed that HIIT and MICT increase the transcription of the PGC-1α gene and possibly the increased expression of this gene after HIIT and MICT plays a central role in the secretion of skeletal muscle myokines and adipokines of adipose tissue.

Level of evidence

No Level of evidence: Animal study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214(2):337–346

    CAS  PubMed  Google Scholar 

  2. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816

    CAS  PubMed  Google Scholar 

  3. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    CAS  PubMed  Google Scholar 

  4. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK et al (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281(3):739–749

    CAS  PubMed  Google Scholar 

  5. Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30(4):145–151

    PubMed  Google Scholar 

  6. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546(3):851–858

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC et al (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52(8):1888–1896

    CAS  PubMed  Google Scholar 

  9. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

    PubMed  PubMed Central  Google Scholar 

  10. Wada K, Nakajima A, Blumberg RS (2001) PPARγ and inflammatory bowel disease: a new therapeutic target for ulcerative colitis and Crohn’s disease. Trends Mol Med 7(8):329–331

    CAS  PubMed  Google Scholar 

  11. Boström PA, Fernández-Real JM, Mantzoros C (2014) Irisin in humans: recent advances and questions for future research. Metab Clin Exp 63(2):178–180

    PubMed  Google Scholar 

  12. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61(12):1725–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G (2015) Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 309(8):E691–E714

    Google Scholar 

  14. Cinti S (2012) The adipose organ at a glance. Dis Models Mech 5(5):588–594

    CAS  Google Scholar 

  15. Oh S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443(7112):709–712

    Google Scholar 

  16. Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S et al (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151(7):3169–3180

    CAS  PubMed  Google Scholar 

  17. Tang C-H, Fu X-J, Xu X-L, Wei X-J, Pan H-S (2012) The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 36(1):39–45

    CAS  PubMed  Google Scholar 

  18. Angelone T, Filice E, Pasqua T, Amodio N, Galluccio M, Montesanti G et al (2013) Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci 70(3):495–509

    CAS  PubMed  Google Scholar 

  19. Ghanbari-Niaki A, Kraemer RR, Soltani R (2010) Plasma nesfatin-1 and glucoregulatory hormone responses to two different anaerobic exercise sessions. Eur J Appl Physiol 110(4):863–868

    CAS  PubMed  Google Scholar 

  20. Bashiri J, Gholami F, Rahbaran A, Tarmahi V (2012) Effect of single bout of aerobic exercise on serum nesfatin-1 levels in non-athlete elderly men. Med J Tabriz Univ Med Sci 34(4):25–30

    Google Scholar 

  21. Tavassoli H, Tofighi A, Hedaytai M (2014) Appetite and exercise influence of 12 weeks of circuit resistance training on the nesfatin-1 to acylated ghrelin ratio of plasma in overweight adolescents. Iran J Endocrinol Metab 15(6):519–526

    Google Scholar 

  22. Bajer B, Vlcek M, Galusova A, Imrich R, Penesova A (2015) Exercise associated hormonal signals as powerful determinants of an effective fat mass loss. Endocr Regul 49(3):151–163

    CAS  PubMed  Google Scholar 

  23. Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M (2015) The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig 21(3):165–173

    CAS  PubMed  Google Scholar 

  24. Lee SE, Kim H-S (2012) Human resistin in cardiovascular disease. J Smooth Muscle Res 48(1):27–35

    CAS  PubMed  Google Scholar 

  25. Schwartz DR, Lazar MA (2011) Human resistin: found in translation from mouse to man. Trends Endocrinol Metab 22(7):259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    CAS  PubMed  Google Scholar 

  27. Aquilante CL, Kosmiski LA, Knutsen SD, Zineh I (2008) Relationship between plasma resistin concentrations, inflammatory chemokines, and components of the metabolic syndrome in adults. Metabolism 57(4):494–501

    CAS  PubMed  Google Scholar 

  28. Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN (2013) Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 227(2):216–221

    CAS  PubMed  Google Scholar 

  29. Kim M, kyun Oh J, Sakata S, Liang I, Park W, Hajjar RJ et al (2008) Role of resistin in cardiac contractility and hypertrophy. J Mol Cell Cardiol 45(2):270–280

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Melone M, Wilsie L, Palyha O, Strack A, Rashid S (2012) Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol 59(19):1697–1705

    CAS  PubMed  Google Scholar 

  31. Palanivel R, Sweeney G (2005) Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett 579(22):5049–5054

    CAS  PubMed  Google Scholar 

  32. Palanivel R, Maida A, Liu Y, Sweeney G (2006) Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 49(1):183–190

    CAS  PubMed  Google Scholar 

  33. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Investig 116(3):615

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghafari Homadini S, Asad MR, Bazgir B, Rahimi M (2017) Effects of high intensity interval training and moderate-intensity continuous training on VEGF gene expression in visceral and subcutaneous adipose tissues of male wistar rats. Iran J Endocrinol Metab 19(3):170–176

    Google Scholar 

  35. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454(7203):463–469

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1αexpression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci 106(48):20405–20410

    Google Scholar 

  37. Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O et al (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    CAS  PubMed  Google Scholar 

  38. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370

    PubMed  Google Scholar 

  39. Anastasilakis AD, Polyzos SA, Saridakis ZG, Kynigopoulos G, Skouvaklidou EC, Molyvas D et al (2014) Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J Clin Endocrinol Metab 99(9):3247–3255

    CAS  PubMed  Google Scholar 

  40. Daskalopoulou SS, Cooke AB, Gomez Y-H, Mutter AF, Filippaios A, Mesfum ET et al (2014) Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 171(3):343–352

    CAS  PubMed  Google Scholar 

  41. Pekkala S, Wiklund PK, Hulmi JJ, Ahtiainen JP, Horttanainen M, Pöllänen E et al (2013) Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J Physiol 591(21):5393–5400

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Czarkowska-Paczek B, Zendzian-Piotrowska M, Gala K, Sobol M, Paczek L (2014) One session of exercise or endurance training does not influence serum levels of irisin in rats. J Physiol Pharmacol 65(3):449–454

    CAS  PubMed  Google Scholar 

  43. Fain JN, Company JM, Booth FW, Laughlin MH, Padilla J, Jenkins NT et al (2013) Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs. Metabolism 62(10):1503–1511

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM et al (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22(4):734–740

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras AB et al (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 8(4):e60563

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Crujeiras AB, Pardo M, Arturo RR, Santiago NC, Zulet M, Martínez JA et al (2014) Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol 26(2):198–207

    PubMed  Google Scholar 

  47. Sesti G, Andreozzi F, Fiorentino T, Mannino G, Sciacqua A, Marini M et al (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 51(5):705–713

    CAS  PubMed  Google Scholar 

  48. Zhang H-J, Zhang X-F, Ma Z-M, Pan L-L, Chen Z, Han H-W et al (2013) Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 59(3):557–562

    CAS  PubMed  Google Scholar 

  49. Wen M-S, Wang C-Y, Lin S-L, Hung K-C (2013) Decrease in irisin in patients with chronic kidney disease. PLoS One 8(5):e64025

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohebbi H, Nourshahi M, Ghasemikaram M, Safarimosavi S (2015) Effects of exercise at individual anaerobic threshold and maximal fat oxidation intensities on plasma levels of nesfatin-1 and metabolic health biomarkers. J Physiol Biochem 71(1):79–88

    CAS  PubMed  Google Scholar 

  51. Wang Y, Li Z, Zhang X, Xiang X, Li Y, Mulholland MW et al (2016) Nesfatin-1 promotes brown adipocyte phenotype. Sci Rep 6:34747

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jørgensen SB, Honeyman J, Oakhill JS, Fazakerley D, Stöckli J, Kemp BE et al (2009) Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab 297(1):E57–E66

    Google Scholar 

  53. Giannopoulou I, Fernhall B, Carhart R, Weinstock RS, Baynard T, Figueroa A et al (2005) Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 54(7):866–875

    CAS  PubMed  Google Scholar 

  54. Kelly AS, Steinberger J, Olson TP, Dengel DR (2007) In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 56(7):1005–1009

    CAS  PubMed  Google Scholar 

  55. Jones TE, Basilio J, Brophy P, McCammon M, Hickner R (2009) Long-term exercise training in overweight adolescents improves plasma peptide Yy and resistin. Obesity 17(6):1189–1195

    CAS  PubMed  Google Scholar 

  56. Prestes J, Shiguemoto G, Botero JP, Frollini A, Dias R, Leite R et al (2009) Effects of resistance training on resistin, leptin, cytokines, and muscle force in elderly post-menopausal women. J Sports Sci 27(14):1607–1615

    PubMed  Google Scholar 

  57. Shirvani H, Aslani J (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on serum irisin and expression of skeletal muscle PGC-1α gene in male rats. Tehran Univ Med J TUMS Publ 75(7):513–520

    Google Scholar 

Download references

Acknowledgements

This research study is a result of a research project approved by the Baqiyatallah University of Medical Sciences, sponsored by the Sports Physiology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shirvani.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interests in the present research study.

Ethical approval

The study protocol conformed to the Declaration of Helsinki and was approved by the Ethical Committee supervising procedures on experimental animals at Baqiyatallah University of Medical Sciences (Ethical cod#IR.BMSU.REC.1396.818).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirvani, H., Arabzadeh, E. Metabolic cross-talk between skeletal muscle and adipose tissue in high-intensity interval training vs. moderate-intensity continuous training by regulation of PGC-1α. Eat Weight Disord 25, 17–24 (2020). https://doi.org/10.1007/s40519-018-0491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-018-0491-4

Keywords

Navigation