Skip to main content
Log in

Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Platte, W.N., Smith, J.F.: Laser techniques for metals joining. Weld. J. 42(11), 481–489 (1963)

    Google Scholar 

  2. Walsh, C.A.: LASER WELDING - Literature Review. Materials Science and Metallurgy Department, University of Cambridge, England (2002)

    Google Scholar 

  3. Noaker, P.M.: Lasers penetrate fabricating. Manuf. Eng. 10, 33–40 (1993)

    Google Scholar 

  4. Assuncao, E., Williams, S., Yapp, D.: Interaction time and beam diameter effects on the conduction mode limit. Opt. Lasers Eng. 50(6), 823–828 (2012)

    Article  Google Scholar 

  5. Mazumder, J., Steen, W.M.: Heat transfer model for cw laser material processing. J. Appl. Phys. 51, 941–947 (1980)

    Article  Google Scholar 

  6. Steen, W.M., Dowden, J., Davis, M., Kapadia, P.: A point and line source model of laser keyhole welding. J. Phys. D. Appl. Phys. 21(8), 1255 (1988)

    Article  Google Scholar 

  7. Mohanty, P.S., Mazumder, J.: Workbench for keyhole laser welding. Sci. Technol. Weld. Join. 2, 133–138 (1997)

    Article  Google Scholar 

  8. Mackwooda, A.P., Crafer, R.C.: Thermal modeling of laser welding and related processes: a literature review. Opt. Lasers Technol. 37, 99–115 (2005)

    Article  Google Scholar 

  9. Verhaeghe, G., Hilton, P.: The effect of spot size and laser beam quality on welding performance when using high-power continuous wave solid-state lasers. ICALEO 2005, 24th International Congress on Applications of Lasers & Electro-Optics (2005)

  10. Balasubramanian, K.R., Siva Shanmugam, N., Buvanashekaran, G., Sankaranarayanasamy, K.: Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. Adv. Prod. Eng. Manag. 3(2), 93–105 (2008)

    Google Scholar 

  11. Duocastella, M., Arnold, C.B.: Bessel and annular beams for materials processing. Laser Photonics Rev. 6(5), 607–621 (2012)

    Article  Google Scholar 

  12. Daniel, J.L., Hyungson, K., Jyoti, M.: Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL). J. Phys. D. Appl. Phys. 39, 2624–2635 (2006)

    Article  Google Scholar 

  13. Luo, C., Lin, L.: The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask. Sensor Actuator A 97–98, 398–404 (2002)

    Article  Google Scholar 

  14. Heßmann, T.M.: Laser Welding of Silicon Foils for Thin-Film Solar Cell Manufacturing. Dissertation, Universität Erlangen (2014)

  15. Brettschneider, T., Dorrer, C., Bründel, M., Zengerle, R., Daub, M.: Wafer-level packaging and laser bonding as an approach for silicon-into-lab-on-chip integration. J. Micromech. Microeng. 23(5), (2013)

  16. Tangwarodomnukun, V.: Towards damage-free micro-fabrication of silicon. Doctoral Dissertation, School of Mechanical and Manufacturing Engineering, the University of New South Wales (2012)

  17. Holman, J.P.: Heat Transfer, 10th edn. McGraw-Hill, New York (2010)

    Google Scholar 

  18. Sun, H.: A Practical Guide to Handling Laser Diode Beams. Springer, Netherlands (2015)

    Book  Google Scholar 

  19. Dowden, J.M.: The Mathematics of Thermal Modeling. Chapman & Hall/CRC (2001)

  20. Hodgson, N., Weber, H.: Laser Resonator and Beam Propagation, 2nd edn. Springer Science+Business Media, Inc, New York (2005)

    Google Scholar 

  21. Reitz, J.R., Milford, F.J., Christy, R.W.: Foundations of Electromagnetic Theory, 4th edn. Addison-Wesley, Boston (1993)

    Google Scholar 

  22. Ohsaka, K., Chung, S.K., Rhim, W.K., Holzer, J.C.: Densities of Si determined by an image digitizing technique in combination with an electrostatic levitator. Appl. Phys. Lett. 7(4), 423–425 (1997)

    Article  Google Scholar 

  23. Touloukian, Y.S., Buyco, E.H.: Thermophysical Properties of Matter, vol. 2. IFI/Plenum, New York (1970)

    Google Scholar 

  24. Touloukian, Y.S., Makita, T.: Thermophysical Properties of Matter, vol. 6. IFI/Plenum, New York (1976)

    Google Scholar 

  25. Grigoropoulos, C.P., Buckholz, R.H., Domoto, G.A.: A heat transfer algorithm for the laser-induced melting and recrystallization of thin silicon layers. J. Appl. Phys. 60, 2304–2309 (1986)

    Article  Google Scholar 

  26. Moody, J.E., Hendel, R.H.: Temperature profiles induced by a scanning cw laser beam. J. Appl. Phys. 53(6), 4364–4371 (1982)

    Article  Google Scholar 

  27. Bergmann, J., Heusinger, M., Andr, G., Falk, F.: Temperature dependent optical properties of amorphous silicon for diode laser crystallization. Opt. Express 20(S6), A856–A863 (2012)

    Article  Google Scholar 

  28. http://pveducation.org/pvcdrom/materials/optical-properties-of-silicon, last accessed 2/25/2015

  29. Ion, J.C.: Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application. Elsevier, Butterworth-Heinemann (2005)

  30. Chien, J., Pepiot, P., Khayms, V.: Linear Algebra and Partial Differential Equations for Engineers. MATLAB Workbook. Cornell University MATH2940 http://www.learningace.com/doc/2716459/cfad8a2df94b9d7b954d3886ba22fd58/darve_cme104_matlab last accessed 10/16/2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shayganmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayganmanesh, M., Khoshnoud, A. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding. Lasers Manuf. Mater. Process. 3, 50–66 (2016). https://doi.org/10.1007/s40516-016-0022-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-016-0022-y

Keywords

Navigation