Skip to main content
Log in

Numerical analysis of static and dynamic heat source model approaches in laser micro spot welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, a transient three-dimensional finite element model (FEM) of the laser micro spot welding (LMSW) process was established considering three heat source approaches: static heat source model (SHSM), dynamic heat source model (DHSM), and double dynamic heat source model (DDHSM). Each model was computed according to the aspect ratio of spot width to depth and the absorptance of the material. The numerical simulation computed the conduction-to-keyhole transition using an AISI 302 stainless steel alloy. Our results showed that the DDHSM results were based on the experiments reported in the literature. The conduction-to-keyhole transition for the SHSM and DHSM was observed to depend on the average laser power, having a constant keyhole aperture at 75 ms exposure time and 220 W average laser power. Additionally, the DDHSM configuration gave a conduction-to-keyhole transition with a similar constant aperture at 75 and 50 ms of exposure time for 200 and 220 W average laser power, respectively. The percentage errors for the DDHSM were 8%, 15%, 17%, and 20% for the penetration depth, top, middle, and bottom width, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

A :

Cross-sectional area, mm2

Ab :

Absorptance of the material, %

Cp :

Specific heat capacity, J/kg°C

h :

Melt pool’s penetration depth, µm

k :

Thermal conductivity, W/m2°C

N :

The normal vector of the surfaces

q :

Localized heat flux, \({\text{W}}/{{\text{m}}}^{2}\)

R :

Electrical resistivity, \(\mathrm{\mu \Omega cm}\)

T :

Temperature, \(^\circ{\rm C}\)

t :

Exposure time, \({\text{s}}\)

V :

Melt pool volume, \({{\text{mm}}}^{3}\)

z :

Distance from the top surface of the substrate, \({\text{mm}}\)

h K :

Keyhole’s penetration depth, \(\mathrm{\mu m}\)

h c :

Heat convection transfer coefficient, \({\text{W}}/{{\text{m}}}^{2}\mathrm{^\circ{\rm C} }\)

H LMSW :

Welding heat source, \({\text{J}}\)

H p :

Specific heat required, \({\text{J}}/{{\text{mm}}}^{3}\)

k n :

Thermal conductivity normal to the surface, \({\text{W}}/{{\text{m}}}^{2}\mathrm{^\circ{\rm C} }\)

L F :

Latent heat of fusion, \({\text{J}}/{\text{kg}}\)

T O :

Initial temperature, \(^\circ{\rm C}\)

T M :

Melting temperature, °C

TB :

Boiling temperature, °C

tCK :

Time to close keyhole, s

t OK :

Time to open keyhole, s

P AVG :

Average laser power, W

Q in :

Heat input transferred, J

Q surf :

Circular heat surface, \({\text{J}}\)

Q vol :

Cylindrical heat volume, \({\text{J}}\)

W T :

Top width, \(\mathrm{\mu m}\)

W M :

Middle width, \(\mathrm{\mu m}\)

W B :

Bottom width, \(\mathrm{\mu m}\)

λ :

Laser beam’s wavelength, \({\text{nm}}\)

κ :

Thermal diffusivity, \({{\text{mm}}}^{2}/{\text{s}}\)

ρ :

Density of the material, \({\text{kg}}/{{\text{m}}}^{3}\)

η C :

Coupling efficiency, \(\%\)

Φ O :

Laser spot diameter at the focal plane, \(\mathrm{\mu m}\)

Φ B :

Laser spot diameter or heating surface diameter, \(\mathrm{\mu m}\)

Φ H :

Heating volume diameter, \(\mathrm{\mu m}\)

References

  1. Cedeño-Viveros LD,  Rodríguez CA, Segura-Ibarra V, Vázquez E, García-López E (2022) Characterization of porous scaffolds fabricated by joining stacking based laser micro-spot welding (JS-LMSW) for tissue engineering applications. Materials 15:99 https://doi.org/10.3390/ma15010099

    Article  Google Scholar 

  2. Cedeño-Viveros LD, Olivas-Alanis LH, Lopez-Botello O, Rodriguez CA, Vazquez-Lepe E, García-López E (2022) A novel method for the fabrication of tubular WE43 magnesium scaffold based on laser micro-spot welding. Eng Sci Technol Int J 34 https://doi.org/10.1016/j.jestch.2022.101096

  3. Liu Y, Lim J, Teoh S-H (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705 https://doi.org/10.1016/j.biotechadv.2012.10.003

    Article  Google Scholar 

  4. Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2:790−832 https://doi.org/10.3390/ma2030790

    Article  Google Scholar 

  5. Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, Jablonská E, Lipov J, Ruml T (2016) Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater Sci Eng, C 69:631−639 https://doi.org/10.1016/j.msec.2016.07.027

    Article  Google Scholar 

  6. Xie F, He X, Cao S, Qu X (2013) Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering. J Mater Process Technol 213:838−843 https://doi.org/10.1016/j.jmatprotec.2012.12.014

    Article  Google Scholar 

  7. Vangapally S, Agarwal K, Sheldon A, Cai S (2017) Effect of lattice design and process parameters on dimensional and mechanical properties of binder jet additively manufactured stainless steel 316 for bone scaffolds. Procedia Manuf 10:750−759 https://doi.org/10.1016/j.promfg.2017.07.069

    Article  Google Scholar 

  8. Wang J, Sun Z, Gu L, Azimy H (2021) Investigating the effect of laser cutting parameters on the cut quality of Inconel 625 using response surface method (RSM). Infrared Phys Technol 118. https://doi.org/10.1016/j.infrared.2021.103866

  9. Khan MMA, Romoli L, Fiaschi M, Dini G, Sarri F (2011) Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration. Opt Laser Technol 43:158−172 https://doi.org/10.1016/j.optlastec.2010.06.006

    Article  Google Scholar 

  10. Rong Y, Wnag L, Wu R, Xu J (2022) Visualization and simulation of 1700MS sheet laser welding based on three-dimensional geometries of weld pool and keyhole. Int J Therm Sci 171:107257

    Article  Google Scholar 

  11. Harooni M, Carlson B, Kovacevic R (2014) Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis. Opt Lasers Eng 56:54−66 https://doi.org/10.1016/j.optlaseng.2013.11.015

    Article  Google Scholar 

  12. Zhang Y, Hossein Razavi Dehkordi M, Javad Kholoud M, Azimy H, Li Z, Akbari M (2024) Numerical modeling of the temperature distribution and melt flow in dissimilar fiber laser welding of duplex stainless steel 2205 and low alloy steel. Opt Laser Technol 174. https://doi.org/10.1016/j.optlastec.2024.110575

  13. Rawa MJH, Razavi Dehkordi MH, Kholoud MJ, Abu-Hamdeh NH, Azimy H (2023) Using the numerical simulation and artificial neural network (ANN) to evaluate temperature distribution in pulsed laser welding of different alloys. Eng Appl Artif Intell 126. https://doi.org/10.1016/j.engappai.2023.107025

  14. Li Q, Mu Z, Luo M, Huang A, Pang S (2021) Laser spot micro-welding of ultra-thin steel sheet. Micromachines (Basel) 12:342 https://doi.org/10.3390/mi12030342

    Article  Google Scholar 

  15. Desai RS, Bag S (2014) Influence of displacement constraints in thermomechanical analysis of laser micro-spot welding process. J Manuf Process 16:264−275 https://doi.org/10.1016/j.jmapro.2013.10.002

    Article  Google Scholar 

  16. Kawahito Y, Kawasaki M, Katayama S (2008) In-process monitoring and adaptive control during micro welding with CW fiber laser. J Laser Micro Nanoeng 3:46−51 https://doi.org/10.2961/jlmn.2008.01.0009

    Article  Google Scholar 

  17. Nisar S, Noor A, Shah A, Siddiqui U, Zia Khan S (2023) Optimization of process parameters for laser welding of A5083 aluminium alloy. Opt Laser Technol 163. https://doi.org/10.1016/j.optlastec.2023.109435

  18. Mayi YA, Dal M, Peyre P, Bellet M, Fabbro R (2023) Physical mechanisms of conduction-to-keyhole transition in laser welding and additive manufacturing processes. Opt Laser Technol. 158 https://doi.org/10.1016/j.optlastec.2022.108811

  19. Xiao X, Fu Y, Ye X, Cheng M, Song L (2022) Analysis of heat transfer and melt flow in conduction, transition, and keyhole modes for CW laser welding. Infrared Phys Technol 120. https://doi.org/10.1016/j.infrared.2021.103996

  20. Jiang D, Alsagri AS, Akbari M, Afrand M, Alrobaian AA (2019) Numerical and experimental studies on the effect of varied beam diameter, average power and pulse energy in Nd: YAG laser welding of Ti6Al4V. Infrared Phys Technol 101:180−188 https://doi.org/10.1016/j.infrared.2019.06.006

    Article  Google Scholar 

  21. Krasnoperov MY, Pieters RRGM, Richardson IM (2004) Weld pool geometry during keyhole laser welding of thin steel sheets. Sci Technol Weld Joining 9:501−506 https://doi.org/10.1179/136217104225021733

    Article  Google Scholar 

  22. Cedeño-Viveros LD, Vázquez-Lepe E, Rodríguez CA, García-López E (2021) Influence of process parameters for sheet lamination based on laser micro-spot welding of austenitic stainless steel sheets for bone tissue applications. Int J Adv Manuf Technol 115:247−262 https://doi.org/10.1007/s00170-021-07113-3

    Article  Google Scholar 

  23. Penner D, Bernstein IM (1977) Handbook of stainless steels. McGraw-Hill

    Google Scholar 

  24. He X, Norris JT, Fuerschbach PW, Debroy T (2006) Liquid metal expulsion during laser spot welding of 304 stainless steel. J Phys D: Appl Phys 39:525−534 https://doi.org/10.1088/0022-3727/39/3/016

    Article  Google Scholar 

  25. Siva Shanmugam N, Buvanashekaran G, Sankaranarayanasamy K (2012) Some studies on weld bead geometries for laser spot welding process using finite element analysis. Mater Des 34:412−426 https://doi.org/10.1016/j.matdes.2011.08.005

    Article  Google Scholar 

  26. Simonds BJ, Sowards J, Hadler J, Pfeif E, Wilthan B, Tanner J, Harris C, Williams P, Lehman J (2018) Time-resolved absorptance and melt pool dynamics during intense laser irradiation of a metal. Phys Rev Appl 10:1 https://doi.org/10.1103/PhysRevApplied.10.044061

    Article  Google Scholar 

  27. Patschger A, Bliedtner J, Bergmann JP (2013) Approaches to increase process efficiency in laser micro welding. Phys Procedia 41:592−602 https://doi.org/10.1016/j.phpro.2013.03.121

    Article  Google Scholar 

  28. Jouvard JM, Girard K, Perret O (2001) Keyhole formation and power deposition in Nd:YAG laser spot welding. J Phys D: Appl Phys 34:2894−2901

    Article  Google Scholar 

  29. Dausinger F (1995) Strahlwerkzeug Laser: Energiekopplung und Prozesseffektivität Laser in der Materialbearbeitung. Teubner

    Google Scholar 

  30. Ready J (1997) Industrial applications of lasers Elsevier. Second

    Google Scholar 

  31. Franco A, Romoli L, Musacchio A (2014) Modelling for predicting seam geometry in laser beam welding of stainless steel. Int J Therm Sci 79:194−205 https://doi.org/10.1016/j.ijthermalsci.2014.01.003

    Article  Google Scholar 

  32. Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319−328 https://doi.org/10.1016/j.matdes.2018.01.022

    Article  Google Scholar 

  33. Rettelbach T, Schmitz GJ (2003) 3D simulation of temperature, electric field and current density evolution in superconducting components. Supercond Sci Technol 16:645−653

    Article  Google Scholar 

  34. Fiedler T, Veyhl C, Belova IV, Murh GE (2010) Numerical simulation of thermal management with heat sink composites. In: 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE, pp 1–5

  35. Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K (2010) Experimental investigation and finite element simulation of laser beam welding of AISI 304 stainless steel sheet. Exp Tech 34:25−36 https://doi.org/10.1111/j.1747-1567.2009.00552.x

    Article  Google Scholar 

  36. Jamrozik W, Górka J, Wyględacz B, Kiel‐jamrozik M (2022) FEM‐based thermogram correction for inconel 625 joint hardness clustering. Materials 15. https://doi.org/10.3390/ma15031113

  37. Altair Engineering Inc (2022) MATT4 bulk data entry. In: Reference guide. https://2022.help.altair.com/2022.3/hwsolvers/os/topics/solvers/os/matt4_bulk_r.htm?zoom_highlight=MATT4. Accessed 7 Apr 2024

  38. Altair Engineering Inc (2022) OS-T: 1090: Linear transient heat transfer analysis of an extended surface heat transfer fin. In: Reference guide. https://2022.help.altair.com/2022.3/hwsolvers/os/topics/solvers/os/extended_surface_heat_transfer_fin_r.htm?zoom_highlight=CONDUCTION+CONVECTION. Accessed 7 Apr 2024

  39. Altair Engineering Inc (2022) TLOAD1 bulk data entry. In: Reference guide. https://2022.help.altair.com/2022.3/hwsolvers/os/topics/solvers/os/tload1_bulk_r.htm?zoom_highlight=tload1. Accessed 7 Apr 2024

  40. Ventrella VA, Berretta JR, Rossi de  W (2010) Pulsed Nd:YAG laser seam welding of AISI 316L stainless steel thin foils. J Mater Process Technol 210:1838−1843 https://doi.org/10.1016/j.jmatprotec.2010.06.015

    Article  Google Scholar 

  41. Bachmann M, Artinov A, Meng X, Putra SN, Rethmeier M (2023) Challenges in dynamic heat source modeling in high-power laser beam welding. J Laser Appl 35. https://doi.org/10.2351/7.0001079

  42. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett AD (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363:849−852

    Article  Google Scholar 

  43. Hahn DW, Özisik MN (2012) Heat conduction fundamentals. Wiley

    Book  Google Scholar 

  44. Yan C, Wei D, Wang G (2022) Three-dimensional finite discrete element-based contact heat transfer model considering thermal cracking in continuous–discontinuous media. Comput Methods Appl Mech Eng 388. https://doi.org/10.1016/j.cma.2021.114228

  45. Zhao S, Yu G, He X, Zhang Y, Ning W (2011) Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo. J Mater Process Technol 211:530−537 https://doi.org/10.1016/j.jmatprotec.2010.11.007

    Article  Google Scholar 

  46. Dortkasli K, Isik M, Demir E (2022) A thermal finite element model with efficient computation of surface heat fluxes for directed-energy deposition process and application to laser metal deposition of IN718. J Manuf Process 79:369−382 https://doi.org/10.1016/j.jmapro.2022.04.049

    Article  Google Scholar 

  47. Lemkeddem S, Khelfaoui F, Babahani O (2018) Calculation of energy lost by radiation and convection during laser welding of TA6V titanium alloy. J Theor Appl Phys 12:113−120 https://doi.org/10.1007/s40094-018-0288-x

    Article  Google Scholar 

  48. Rong Y, Wnag L, Wu R, Xu J (2022) Visualization and simulation of 1700MS sheet laser welding based on three-dimensional geometries of weld pool and keyhole. Int J Therm Sci 171:107257

    Article  Google Scholar 

  49. Acherjee B (2018) FEM-ANN sequential modelling of laser transmission welding for prediction of weld pool dimensions. In: Non-Conventional Machining in Modern Manufacturing Systems, pp 249–261

Download references

Funding

This research was funded by Tecnologico de Monterrey through the Research Unit of Accelerated Materials Discovery of the Institute of Advanced Materials for Sustainable Manufacturing. The characterizations were performed in the National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN-314934.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding authors

Correspondence to Luis D. Cedeño-Viveros or Alex Elías-Zúñiga.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Nogales, R., García-López, E., Rodríguez, C.A. et al. Numerical analysis of static and dynamic heat source model approaches in laser micro spot welding. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13645-1

Keywords

Navigation