Skip to main content
Log in

Genotypic variability of drought-tolerance responses in underutilized indigenous finger millet genotypes

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Finger millet production was negatively affected by drought stress. Thus, the assessment of genotypic variability for drought tolerance is of great significance for the finger millet breeding program. A pot experiment was conducted to evaluate drought responses in 32 indigenous finger millets originated from various regions of Koraput along with five improved genotypes including drought tolerant check (GPU28). Variations of early morpho-physiological traits such as seedling length, fresh and dry biomass, dry matter accumulation (DMA), relative growth index (RGI), relative water content (RWC), drought tolerance index (DTI), SPAD index along with photosynthesis gas exchange parameters and PSII activity were evaluated under simulated drought stress by withholding irrigation. The first two axes of principal component analysis (PCA) captured 94.6% of the total variation of morpho-physiological traits and indicated wide variations among the genotypes. Among the studied traits, DTI, DMA, RWC, photosynthetic rate and leaf area are identified as the major determining factor for diversity among finger millet genotypes. These traits also recorded higher genetic heritability accompanied by high genetic advance, which may be of larger interest for crop improvement programmes. Based on drought tolerance ranking, six finger millet genotypes (Ladu, Lala, Bati, Biri, Tumuka and Bhalu) showed superior drought tolerance response compared to the tolerant check genotypes. These genotypes are identified as drought tolerant genotypes of this region suited for cultivation in drought prone areas and can be used in future finger millet breeding programs for drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

None.

Code availability

None.

References

  • Abenavoli, M. R., Leone, M., Sunseri, F., Bacchi, M., & Sorgona, A. (2016). Root phenotyping for droughttolerance in bean landraces from Calabria (Italy). Journal of Agronomy and Crop Science, 202(1), 1–12.

    Article  Google Scholar 

  • Arunachalam, V., Chaudhury, S. S., Sarangi, S. K., Ray, T., Mohanty, B. P., Nambi, V. A., & Mishra, S. (2006). Rising on rice: The story of Jeypore (pp. 1–37). Chennai: MS Swaminathan Research Foundation.

    Google Scholar 

  • Batra, N. G., Kumari, N., & Sharma, V. (2016). Photosynthetic performance of Ocimum sanctum morphotypes in a semiarid region. Journal of Herbs, Spices and Medicinal Plants, 22(3), 211–224.

    Article  CAS  Google Scholar 

  • Bhatt, D., Negi, M., Sharma, P., Saxena, S. C., Dobriyal, A. K., & Arora, S. (2011). Responses to drought inducedoxidative stress in five finger millet varieties differing in their geographical distribution. Physiology andMolecular Biology of Plants, 17(4), 347–353.

    Article  CAS  Google Scholar 

  • Bhattacharjee, S. (2008). Triadimefon pre-treatment protects newly assembled membrane system and causes up regulation of stress proteins in salinity stressed Amaranthus lividus L. during early germination. Journal of Environmental Biology, 29(5), 805–810.

    CAS  PubMed  Google Scholar 

  • Bhattacharjee, S., & Dey, N. (2018). Redox metabolic and molecular parameters for screening drought tolerantindigenous aromatic rice cultivars. Physiology and Molecular Biology of Plants, 24(1), 7–23.

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. W., & Devane, D. E. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material 1. Agronomy Journal, 45(10), 478–481.

    Article  Google Scholar 

  • Ceasar, A. S., Maharajan, T., Krishna, A. T. P., Ramakrishnan, M., Roch, V. G., Satish, L., & Ignacimuthu, S. (2018). Finger Millet [Eleusine coracana (L.) Gaertn.] improvement: Current status and future interventions of whole genome sequence. Frontiers in Plant Science, 9, 1054.

    Article  Google Scholar 

  • Chandra, D., Chandra Pallavi, S., & Sharma, A. K. (2016). Review of finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Science and Human Wellness, 5(3), 149–155.

    Article  Google Scholar 

  • DES-GOI. (2021). Agricultural Statistics at a Glance 2020. Directorate of Economics and Statistics; Ministry of Agriculture, Government of India: New Delhi, India

  • Govindachary, S., Bukhov, N. G., Joly, D., & Carpentier, R. (2004). Photosystem II inhibition by moderate lightunder low temperature in intact leaves of chilling- sensitive and- tolerant plants. Physiologia Plantarum, 121(2), 322–333.

    Article  CAS  PubMed  Google Scholar 

  • Guidi, L., Piccolo, E. L., & Landi, M. (2019). Chlorophyll Fluorescence, photo-inhibition and abiotic stress: Does it make any difference the fact to Be a C3 or C4 species? Frontiers in Plant Science, 10, 174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., Kumar, J., & Kumar, A. (2017). Finger millet: A “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger understressful environments. Frontiers in Plant Science, 8, 643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Journal of Agronomy, 47, 314–318.

    Article  Google Scholar 

  • Khan, F., Upreti, P., Singh, R., Shukla, P. K., & Shirke, P. A. (2017). Physiological performance of two contrastingrice varieties under water stress. Physiology and Molecular Biology of Plants, 23(1), 85–97.

    Article  CAS  PubMed  Google Scholar 

  • Lauteri, M., Haworth, M., Serraj, R., Monteverdi, M. C., & Centritto, M. (2014). Photosyntheticdiffusionalconstraints affect yield in drought stressed rice cultivars during flowering. PLoS ONE, 9(10), e109054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange andchlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125.

    Article  Google Scholar 

  • Mathur, S., & Jajoo, A. (2015). Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quickmethod. Acta Physiologiae Plantarum, 37, 121–127.

    Article  Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence–a practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., & Chaudhury, S. S. (2012). Ethnobotanical flora used by four major tribes of Koraput, Odisha India. Genetic Resources and Crop Evolution, 59(5), 793–804.

    Article  Google Scholar 

  • Mishra, S. S., & Panda, D. (2017). Leaf traits and antioxidant defense for drought tolerance during early growthstage in some popular traditional rice landraces from Koraput India. Rice Science, 24(4), 207–217.

    Article  Google Scholar 

  • Mishra, S. S., Behera, P. K., & Panda, D. (2019). Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha India. Journal of Crop Improvement, 33(2), 254–278.

    Article  CAS  Google Scholar 

  • Mohapatra, P. P., Bhoi, S., Maity, T. K., Majhi, A., & Tarafdar, J. (2017). Genetic variability, heritability and genetic advance studies in onion (Allium cepa L.). Journal of Crop and Weed, 13(3), 32–34.

    Google Scholar 

  • Mukami, A., Ngetich, A., Mweu, C., Oduor, R. O., Muthangya, M., & Mbinda, W. M. (2019). Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiology and Molecular Biology of Plants, 25(4), 837–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundada, P. S., Nikam, T. D., Kumar, S. A., Umdale, S. D., & Ahire, M. L. (2020). Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L) Gaertn) genotypes to PEG-induced osmotic stress. Biocatalysis and Agricultural Biotechnology, 23, 101488.

    Article  Google Scholar 

  • Odeny, D. A., Niazi, A., Tesfaye, K., Lule, D., Wanyonyi, S., & Kunguni, J. S. (2020). Genomic designing for climate smart finger millet. Genomic Designing of climate-smart cereal crops (pp. 287–307). Springer.

    Chapter  Google Scholar 

  • Panda, D., & Sarkar, R. K. (2012). Leaf photosynthetic activity and antioxidant defence associated with Sub1 QTL in rice subjected to submergence and subsequent re-aeration. Rice Science, 19(2), 108–116.

    Article  Google Scholar 

  • Panda, D., Mahakhud, A., Mohanty, B., Mishra, S. S., & Barik, J. (2018). Genotypic variation of photosynthetic gas exchange and stomatal traits in some traditional rice (Oryza sativa L.) landraces from Koraput, India for crop improvement. Physiology and Molecular Biology of Plants, 24(5), 973–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda, D., Rath, C., Behera, P. K., & Lenka, S. K. (2021a). Physiological introspection of leaf photochemical activity and antioxidant metabolism in selected indigenous finger millet genotypes in relation to drought stress. Cereal Research Communications, 49(4), 607–618.

    Article  CAS  Google Scholar 

  • Panda, D., Sailaja, H. N., Behera, P. K., Lenka, K., Sharma, S. S., & Lenka, K. S. (2021b). Genetic diversity of under-utilized indigenous finger millet genotypes from Koraput, India for crop improvement. Journal of Plant Biochemistry and Biotechnology, 30, 99–116.

    Article  CAS  Google Scholar 

  • Panda, D., Behera, P. K., Mishra, S., & Mishra, B. S. (2022a). Differential drought tolerance responses in short-grain aromatic rice germplasms from Koraput valley of Eastern Ghats of India. Plant Physiology Reports, 27(1), 119–131.

    Article  CAS  Google Scholar 

  • Panda, D., Behera, P. K., Panda, A., & Nayak, J. K. (2022b). Advancement in omics technologies for enhancing abiotic stress tolerance in finger millet. Omics approach to manage abiotic stress in cereals (pp. 559–574). Springer.

    Chapter  Google Scholar 

  • Panda, D., & Palita, S. K. (2021). Potential of underutilized wild crops in Koraput, Odisha, India for improving nutritional security and promoting climate resilience.

  • Pradhan, A., Panda, A. K., & Bhavani, R. V. (2019). Finger millet in tribal farming systems contributes to increased availability of nutritious food at household level: Insights from India. Agricultural Research, 8, 540–547.

    Article  Google Scholar 

  • Saha, D., Channabyre Gowda, M. V., Arya, L., Verma, N., & Bansal, K. C. (2016). Genetic and genomic resources of small millets. Critical Reviews in Plant Sciences, 35(1), 56–79.

    Article  CAS  Google Scholar 

  • Singh, J., & Thakur, J. K. (2018). Photosynthesis and abiotic stress in plants. In S. Vats (Ed.), Biotic and abiotic stress tolerance in plants (pp. 27–46). Springer.

    Chapter  Google Scholar 

  • Singh, S. K., Singh, C. M., & Lal, G. M. (2011). Assessment of genetic variability for yield and its component characters in rice (Oryza sativa L.). Plant Biology, 1(4), 73–76.

    Google Scholar 

  • Sood, S., Joshi, D. C., Chandra, A. K., & Kumar, A. (2019). Phenomics and genomics of finger millet: Current status and future prospects. Planta, 250(3), 731–751.

    Article  CAS  PubMed  Google Scholar 

  • Steel, R. G., Torrie, J. H., & Dicky, A. D. (1997). Principles and procedures of statistics: A biometrical approach. McGraw-Hill.

    Google Scholar 

  • Swapna, S., & Shylaraj, K. S. (2017). Screening for osmotic stress responses in rice varieties under drought condition. Rice Science, 24(5), 253–263.

    Article  Google Scholar 

Download references

Acknowledgements

We highly acknowledged the Regional Director, MS Swaminathan Research Foundation, Jeypore, for supplying finger millet seeds for the experiment. Mr. Prafulla K. Behera and Mr. Suraj K. Padhy, PhD Scholars of CUO are thanked for their help during recording of physiological data.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BB, AP and DP conceive and designed the experiments, AP, KL and BB growing the plants and measured the morpho-physiological traits. DP supervised the work, analysed the data and wrote the paper. All the authors given valuable suggestion and approved the final draft of manuscript.

Corresponding author

Correspondence to Debabrata Panda.

Ethics declarations

Conflict of interest

The authors reported no conflict of interest.

Ethics approval

None.

Consent to participate

None.

Consent for publication

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Panda, A., Bhoi, B. et al. Genotypic variability of drought-tolerance responses in underutilized indigenous finger millet genotypes. Plant Physiol. Rep. 28, 362–377 (2023). https://doi.org/10.1007/s40502-023-00742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00742-8

Keywords

Navigation