Skip to main content
Log in

Stress response induced by cadmium in soybeans (Glycine max L.) and health risk assessment

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is considered to be a dangerous trace element and environmental pollutant that causes a serious problem to agro ecosystem, and alters the functions of living organisms. For this purpose, this research was to assess the effects of Cd on the ecophysiological responses of Glycine max L. Seeds of soybean were grown in soil with 0, 50, 150, and 300 ppm CdCl2 for 10 days. The growth and physiological parameters of soybean were measured; the potential toxicological risk associated with soybean consumption was evaluated. Roots, stems, and leaves were contaminated by Cd in a concentration-dependent manner. The human health risk caused by Cd is only acceptable at 50 ppm and increases with the concentration of Cd. The results revealed different responses according to Cd concentration. However, to control the level of ROS, soybeans could counteract Cd stress via elevating antioxidant enzyme activities which are upregulated in roots and leaves. The total phenols, flavonoids, proline content and phenylalanine ammonia-lyase activity were increased with Cd concentration. Finally, glutathione, and ascorbate were increased in the leaves, and they were less affected in the roots compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126

    Article  CAS  Google Scholar 

  • Ahammed, G. J., Choudhary, S. P., Chen, S. C., Xia, X. J., Shi, K., Zhou, Y. H., & Yu, J. Q. (2013).

  • Role of brassino steroids in alleviation of phenanthrene cadmium cocontamination-induced photosynthetic inhibition and oxidative stress in tomato.Journal Experimental Botany64,199–213

  • Allen, S. E., Grimshaw, H. M., Rowland, A. P., Moore, P. D., & Chapman, S. B. (1986). Methods in plant ecology: Chemical analysis

  • Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 113, 548–555

    Article  CAS  Google Scholar 

  • Barr, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci, 15, 413–428

    Article  Google Scholar 

  • Bashir, W., Anwar, S., Zhao, Q., Hussain, I., & Xie, F. (2019). Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 175, 90–101

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254

    Article  CAS  Google Scholar 

  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98(4), 1222–1227

    Article  CAS  Google Scholar 

  • Cuypers, A., Hendrix, S., dos Reis, A., De Smet, R., Deckers, S., Gielen, J., & Keunen, H., E (2016). Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Frontiers in Plant Science, 7, 470

    Article  Google Scholar 

  • De Vos, C. R., Vonk, M. J., Vooijs, R., & Schat, H. (1992). Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant physiology, 98(3), 853–858

    Article  Google Scholar 

  • Finger-Teixeira, A., Ferrarese, M. D. L., Soares, A. R., Da Silva, D., & Ferrarese-Filho, O. (2010). Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety, 73(8), 1959–1964

    Article  CAS  Google Scholar 

  • Gerasimova, N. G., Pridvorova, S. M., & Ozeretskovskaya, O. L. (2005). Role of L-phenylalanine ammonia Lyase in the induced resistance and susceptibility of potato plants. Applied Biochemistry and Microbiology, 41(1), 103–105

    CAS  Google Scholar 

  • Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930

    Article  CAS  Google Scholar 

  • Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2019). Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration - a review. Science of the Total Environment, 651, 2927–2942

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139

    Article  CAS  Google Scholar 

  • Hartley-Whitaker, J., Woods, C., & Meharg, A. A. (2002). Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus ? New Phytologist, 155(2), 219–225

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198

    Article  CAS  Google Scholar 

  • Hussain, A., Kamran, M. A., Javed, M. T., Hayat, K., Farooq, M. A., Ali, N., & Chaudhary, H. J. (2019). Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany, 159, 23–33

    Article  CAS  Google Scholar 

  • Kampfenkel, K., Vanmontagu, M., & Inze, D. (1995). Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue. Analytical Biochemistry, 225(1), 165–167

    Article  CAS  Google Scholar 

  • Keinan-Boker, L., Peeters, P. H. M., Mulligan, A. A., Navarro, C., Slimani, N., et al. (2007). Soy product consumption in 10 European countries: the European prospective investigation into cancer and nutrition (EPIC) study. Public Health Nutr, 5, 1217e1226. https://doi.org/10.1079/PHN2002400

    Article  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy.Current Protocols in Food Analytical Chemistry,F4-3

  • Liu, L., Shang, Y. K., Li, L., Chen, Y. H., Qin, Z. Z., Zhou, L. J., & Yang, R. W. (2018). Cadmium stress in Dongying wild soybean seedlings: growth, Cd accumulation, and photosynthesis. Photosynthetica, 56(4), 1346–1352

    Article  CAS  Google Scholar 

  • López-Millán, A. F., Sagardoy, R., Solanas, M., Abadía, A., & Abadía, J. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany, 65(2–3), 376–385

    Article  Google Scholar 

  • Lu, Z., Zhang, Z., Su, Y., Liu, C., & Shi, G. (2013). Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety, 91(4), 147–155

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867–880

    CAS  Google Scholar 

  • Nemmiche, S. (2017). Oxidative Signaling Response to Cadmium Exposure. Toxicological Sciences, 156(1), 4–10. https://doi.org/10.1093/toxsci/kfw222

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez-Garcia, B. E., & Foyer, C. H. (2012). Glutathione in plants: an integrated overview. Plant, Cell & Environment, 35(2), 454–484

    Article  CAS  Google Scholar 

  • Nouairi, I., Jalali, K., Essid, S., Zribi, K., & Mhadhbi, H. (2019). Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots. Physiology and Molecular Biology of Plants, 25(4), 921–931

    Article  CAS  Google Scholar 

  • Park, Y. K., Lee, J. H., & Mah, J. H. (2019). Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chemistry, 278, 1–9

    Article  CAS  Google Scholar 

  • Peng, Y., Yang, R., Jin, T., Chen, J., & Zhang, J. (2018). Risk assessment for potentially toxic metal(loid)s in potatoes in the indigenous zinc smelting area of northwestern Guizhou Province, China. Food and Chemical Toxicology, 120, 328–339

    Article  CAS  Google Scholar 

  • Pérez-chaca, M., Vigliocco, A., Reinoso, H., Molina, A., Abdala, G., Zirulnik, F., & Pedranzani, H. (2014). Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.) Merr. Acta Physiologiae Plantarum, 36(10), 2815–2826

    Article  Google Scholar 

  • Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12(1), 29–36

    Article  CAS  Google Scholar 

  • Rehman, Z. U., Khan, S., Brusseau, M. L., & Shah, M. T. (2017). Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere, 168, 1589–1596

    Article  CAS  Google Scholar 

  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), 1112–1126

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178

    Article  CAS  Google Scholar 

  • Soares, C., Branco-Neves, S., De Sousa, A., Azenha, M., Cunha, A., Pereira, R., & Fidalgo, F. (2018). SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Science of the Total Environment, 622, 517–525

    Article  Google Scholar 

  • U.S. EPA. (2000). Risk Characterization Handbook (EPA/100/B-00/002). Washington D.C.: Office of Science Policy, Office of Research and Development, U.S. EPA

    Google Scholar 

  • United States Environmental Protection Agency (U.S EPA). Regional Screening Levels (RSLs) - Generic Tables (November 2017).Risk Assessment Forum, Washington, DC

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59–66

    Article  CAS  Google Scholar 

  • Vezza, M. E., Luna, D. F., Agostini, E., & Talano, M. A. (2019). Glutathione, a key compound for accumulation and tolerance in soybean plants treated with AsV and AsIII. Environmental and Experimental Botany 162:272–282

  • Xia, X. J., Zhang, Y., Wu, J. X., Wang, J. T., Zhou, Y. H., Shi, K., & Yu, J. Q. (2009). Brassinosteroids promote metabolism of pesticides in cucumber. Journal of Agricultural and Food Chemistry, 57(18), 8406–8413

    Article  CAS  Google Scholar 

  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment, 715, 136994. DOI: https://doi.org/10.1016/j.scitotenv.2020.136994

    Article  CAS  PubMed  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project did not receive any specific grant from funding agencies.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Nemmiche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadjouri, H., Medjedded, H., Nemmiche, S. et al. Stress response induced by cadmium in soybeans (Glycine max L.) and health risk assessment. Plant Physiol. Rep. 27, 321–328 (2022). https://doi.org/10.1007/s40502-022-00663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-022-00663-y

Keywords

Navigation