Skip to main content
Log in

The response of salt-stressed Valencia sweet orange (Citrus sinensis) to salicylic acid and methyl jasmonate treatments

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Salinity is an obstacle to citriculture worldwide, and is a concern in arid, semiarid, and coastal regions. In the current study, we irrigated one-year-old ‘Valencia’ trees budded onto Kuharske rootstock with 60 mM sodium chloride (NaCl) solution for ten weeks. Subsequently, these trees were sprayed with 50, 75, and 100 mM SA or MeJA to determine whether these phytohormones could alleviate the detrimental effects of salinity. Control trees were not sprayed, including a positive control with saline irrigation and a negative control without saline irrigation. A reduction in plant growth and chlorophyll content following the NaCl treatment was recorded. Subsequent SA and MeJA treatments promoted tree growth and enhanced chlorophyll content in these trees. Additionally, these treatments enhanced the expression of enzymatic antioxidants: POD, CSD, CAT, PAL, APX1, GSTs, aquaporin proteins, and Na+ co-transporters. SA and MeJA treatments also altered the expression of PR1, PR3, PR4, and PR5, while only MeJA altered the expression of PR2. Abscisic acid (ABA) expression was negatively affected by SA treatments, whereas the MeJA application increased ABA expression relative to the salt treated control. Furthermore, sodium (Na+) and chloride (Cl) analysis indicated that leaves had higher levels of Na+ and Cl in response to SA and MeJA treatments when compared with the controls. Our results provide perspectives at the possible function of SA and MeJA in ameliorating salt stress in citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., et al. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212, 29–37.

    Article  PubMed  Google Scholar 

  • Anderson, D., & Henderson, L. (1988). Comparing sealed chamber digestion with other digestion methods used for plant-tissue analysis. Agronomy Journal, 80, 549–552.

    Article  Google Scholar 

  • Apte, P., & Laloraya, M. (1982). Inhibitory action of phenolic compounds on abscisic acid-induced abscission. Journal of Experimental Botany, 33, 826–830.

    Article  CAS  Google Scholar 

  • Bandurska, H., Stroiński, A., & Kubiś, J. (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiologiae Plantarum, 25, 279–285.

    Article  CAS  Google Scholar 

  • Bassil, E., Tajima, H., Liang, Y. C., Ohto, M. A., Ushijima, K., Nakano, R., et al. (2011). The arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23, 3482–3497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald, E., & Poole, R. J. (1985). Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of beta vulgaris. Plant Physiology, 78, 163–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo, J. M., Campo, S., Murillo, I., Coca, M., & San Segundo, B. (2003). Fungus-and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Molecular Biology, 52, 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Cao, B., Long, D., Zhang, M., Liu, C., Xiang, Z., & Zhao, A. (2016). Molecular characterization and expression analysis of the mulberry Na+/H+ exchanger gene family. Plant Physiology and Biochemistry, 99, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Chao, W. S., Gu, Y. Q., Pautot, V. V., Bray, E. A., & Walling, L. L. (1999). Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology, 120, 979–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, T., Abdullah, M., Fadzillah, N., Lai, O., & Lajis, N. (2005). Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica. Enzyme and Microbial Technology, 36, 469–477.

    Article  CAS  Google Scholar 

  • Colmenero-Flores J.M., Arbona V., Morillon R. Gómez-Cadenas A. (2020). Salinity and water deficit. In: The genus citrus. Elsevier, pp 291–309

  • Datta S.K. Muthukrishnan S. (1999). Pathogenesis-related proteins in plants. CRC press.

  • de Ollas, C., & Dodd, I. C. (2016). Physiological impacts of ABA–JA interactions under water-limitation. Plant Molecular Biology, 91, 641–650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione Transferases. Genome Biology, 3, 1–10.

    Article  Google Scholar 

  • Esan, A. M., Masisi, K., Dada, F. A., & Olaiya, C. O. (2017). Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Scientia Horticulturae, 216, 278–283.

    Article  CAS  Google Scholar 

  • Etehadpour, M., Fatahi, R., Zamani, Z., Golein, B., Naghavi, M.-R., & Gmitter, F. (2020). Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods. Scientia Horticulturae, 261, 109012.

    Article  CAS  Google Scholar 

  • Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2, 342–345.

    Article  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17, 1866–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gálvez, F. J., Baghour, M., Hao, G., Cagnac, O., Rodríguez-Rosales, M. P., & Venema, K. (2012). Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiology and Biochemistry, 51, 109–115.

    Article  PubMed  Google Scholar 

  • García-Sánchez, F., & Syvertsen, J. (2006). Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedlings is affected by CO2 enrichment during growth. Journal of the American Society for Horticultural Science, 131, 24–31.

    Article  Google Scholar 

  • Golkar, P., Taghizadeh, M., & Yousefian, Z. (2019). The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue and Organ Culture (PCTOC), 137, 575–585.

    Article  CAS  Google Scholar 

  • Gong Z., Chinnusamy V., Zhu J.K. (2018). The molecular networks of abiotic stress signaling. Annual Plant Reviews online,388–416

  • Govindjee, S. A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B, 104, 236–257.

    Article  Google Scholar 

  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.

    Article  CAS  PubMed  Google Scholar 

  • Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32, 245–258.

    Article  CAS  Google Scholar 

  • Hasegawa, M., Bressan, R., & Pardo, J. M. (2000). The dawn of plant salt tolerance genetics. Trends in Plant Science, 5, 317–319.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, D. S., Eissa, A. M., Attala, A. Z. M., Sabbah, S. M., & Khalil, H. A. (2018). Alleviation of salinity stress by exogenous plant growth regulators in three citrus rootstocks. Middle East Journal, 7, 437–455.

    Google Scholar 

  • Ibrahim, W., Qiu, C. W., Zhang, C., Cao, F., Shuijin, Z., & Wu, F. (2019). Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiologia Plantarum, 165, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The Salt Overly Sensitive (SOS) pathway: Established and emerging roles. Molecular Plant, 6, 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., & Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91–105.

    Article  CAS  PubMed  Google Scholar 

  • Keshtehgar, A., Rigi, K., & Vazirimehr, M. R. (2013). Effects of salt stress in crop plants. International Journal of Agriculture and Crop Sciences, 5, 2863.

    Google Scholar 

  • Khan, M. I. R., Syeed, S., Nazar, R., & Anjum, N. A. (2012). An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Phytohormones and Abiotic Stress Tolerance in Plants (pp. 277–300). Springer.

  • Khoshbakht, D., & Asgharei, M. (2015). Influence of foliar-applied salicylic acid on growth, gas-exchange characteristics, and chlorophyll fluorescence in citrus under saline conditions. Photosynthetica, 53(3), 410–418.

    Article  CAS  Google Scholar 

  • Kim, E. H., Kim, Y. S., Park, S.-H., Koo, Y. J., Do Choi, Y., Chung, Y.-Y., et al. (2009). Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiology, 149, 1751–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, B. R., Islam, M. T., Park, S. H., Lee, H., Bae, D. W., & Kim, T. H. (2019). Antagonistic shifting from abscisic acid-to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus. Environmental and Experimental Botany, 162, 38–47.

    Article  Google Scholar 

  • Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Li, J., Li, H., Shi, Z., & Zhang, G. (2015). Overexpression of TsApx1 from Thellungiella salsuginea improves abiotic stress tolerance in transgenic Arabidopsis thaliana. Biologia Plantarum, 59, 497–506.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R. (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited.

  • Liu, J., Li, L., Yuan, F., & Chen, M. (2019) Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signaling & Behavior, 1–8

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M., & Grosser, J. W. (2020a). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. South African Journal of Botany, 132, 155–163.

    Article  CAS  Google Scholar 

  • Mahmoud, L. M., Dutt, M., Vincent, C. I., & Grosser, J. W. (2020b). Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae, 6, 90.

    Article  Google Scholar 

  • Menezes-Benavente, L., Teixeira, F. K., Kamei, C. L. A., & Margis-Pinheiro, M. (2004). Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Science, 166, 323–331.

    Article  CAS  Google Scholar 

  • Moons, A. (2005). Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins & Hormones, 72, 155–202.

    Article  CAS  Google Scholar 

  • Moore, G. A. (2001). Oranges and lemons: Clues to the taxonomy of Citrus from molecular markers. Trends in Genetics, 17, 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Mouhaya, W., Allario, T., Brumos, J., Andrés, F., Froelicher, Y., Luro, F., et al. (2010). Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Functional Plant Biology, 37, 674–685.

    Article  CAS  Google Scholar 

  • Munemasa, S., Mori, I. C., & Murata, Y. (2011). Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signaling & Behavior, 6, 939–941.

    Article  CAS  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Munter, R., Halverson, T., & Anderson, R. (1984). Quality assurance for plant tissue analysis by ICP-AES. Communications in Soil Science and Plant Analysis, 15, 1285–1322.

    Article  CAS  Google Scholar 

  • Mylona, P. V., Polidoros, A. N., & Scandalios, J. G. (1998). Modulation of antioxidant responses by arsenic in maize. Free Radical Biology and Medicine, 25, 576–585.

    Article  CAS  PubMed  Google Scholar 

  • Nounjan, N., Nghia, P. T., & Theerakulpisut, P. (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 169, 596–604.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, W., Soares, J., Pang, Z., Huang, Y., Sun, Z., Wang, N., Grosser, J., & Dutt, M. (2020). Potential mechanisms of AtNPR1 mediated Resistance against Huanglongbing (HLB) in Citrus. International Journal of Molecular Sciences, 21, 2009.

    Article  CAS  PubMed Central  Google Scholar 

  • Rai, V., Sharma, S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.

    Article  CAS  Google Scholar 

  • Rashad, R. T., & Hussien, R. A. (2014). A comparison study on the effect of some growth regulators on the nutrients content of maize plant under salinity conditions. Annals of Agricultural Sciences, 59, 89–94.

    Article  Google Scholar 

  • Ren, X., Kong, Q., Wang, P., Jiang, F., Wang, H., Yu, T., & Zheng, X. (2011). Molecular cloning of a PR-5 like protein gene from cherry tomato and analysis of the response of this gene to abiotic stresses. Molecular Biology Reports, 38, 801–807.

    Article  CAS  PubMed  Google Scholar 

  • Reymond, P., & Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1, 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Sakhabutdinova, A., Fatkhutdinova, D., Bezrukova, M., & Shakirova, F. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, 21, 314–319.

    Google Scholar 

  • Sanders, D. (2000). Plant biology: The salty tale of Arabidopsis. Current Biology, 10, R486–R488.

    Article  CAS  PubMed  Google Scholar 

  • Seo, P. J., Lee, A. K., Xiang, F., & Park, C. M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination. Plant and Cell Physiology, 49, 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Lee, B. H., Wu, S. J., & Zhu, J. K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21, 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N. K., Kumar, K. R. R., Kumar, D., Shukla, P., & Kirti, P. (2013). Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS ONE, 8, e83963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, S., Xu, Y., Huang, D., Miao, H., Liu, J., Jia, C., et al. (2018). Identification of a novel promoter from banana aquaporin family gene (MaTIP1; 2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 128, 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, J., Senaratna, T., & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 49, 77–83.

    CAS  Google Scholar 

  • Storey, R., & Walker, R. (1998). Citrus and salinity. Scientia Horticulturae, 78(1–4), 39–81.

    Article  Google Scholar 

  • Ülker, B., Mukhtar, M. S., & Somssich, I. E. (2007). The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 226, 125–137.

    Article  PubMed  Google Scholar 

  • Van Kan, J. A., Cozijnsen, T., Danhash, N., & De Wit, P. J. (1995). Induction of tomato stress protein mRNAs by ethephon, 2,6-dichloroisonicotinic acid and salicylate. Plant Molecular Biology, 27, 1205–1213.

    Article  PubMed  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Vincent, C., Morillon, R., Arbona, V. & Gómez-Cadenas, A. (2020) Citrus in changing environments. In: The Genus Citrus. Elsevier, pp 271–289

  • Wang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168, 2212–2224.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z., Duan, L., Tian, X., Wang, B., Eneji, A. E., & Li, Z. (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 165, 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Shen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Molecular Biology, 64, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q., Chen, L. L., Ruan, X., Chen, D., Zhu, A., Chen, C., et al. (2013). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45, 59.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Hu, W., Liu, J., Zhang, J., Jia, C., Miao, H., et al. (2014). A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 14, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Q., Chen, Z. Z., Zhou, X. F., Yin, H. B., Li, X., Xin, X. F., et al. (2009). Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J. Y., Hamayun, M., Lee, S. K., & Lee, I. J. (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12, 63–68.

    Article  Google Scholar 

  • Zhang, Y., & Shih, D. S. (2007). Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. Journal of Plant Physiology, 164, 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y. & Yang, G. (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PloS ONE 7, (12)

  • Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124, 941–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Dutt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, L.M., Vincent, C.I., Grosser, J.W. et al. The response of salt-stressed Valencia sweet orange (Citrus sinensis) to salicylic acid and methyl jasmonate treatments. Plant Physiol. Rep. 26, 137–151 (2021). https://doi.org/10.1007/s40502-020-00563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00563-z

Keywords

Navigation