Skip to main content

Advertisement

Log in

The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Seedlings of two barley genotypes (‘Maresi’ and wild form of Hordeum spontaneum) were treated with jasmonic acid (JA 5 µM and 15 µM) for 24 h, and then subjected to water stress (PEG 6000 solution of − 1.5 MPa). JA caused an increase in the content of ABA but not in that of proline and spermidine in the two studied genotypes. The effect of the treatment did not depend on the applied JA concentration. The pre-stress treatment with JA changed plant response to water deficit with regard to membrane injury. Treatment with a lower JA concentration (5 µM) caused a substantial reduction of the stress-induced membrane damage in the both genotypes. A higher JA concentration (15 µM) caused the reduction of membrane injury only in H. spontaneum and was ineffective in ‘Maresi’. JA had no influence on the leaf water status in water-stressed plants. A possible role of JA in leaf ABA accumulation and alleviation of cell membrane injury under water deficit is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J.M. 1991. Jasmonic acid-dependent increase in vegetative storage protein in soybean tissue cultures. J. Plant Growth Regul. 10: 5–10.

    Article  CAS  Google Scholar 

  • Aspinall 1980. Role of abscisic acid and other hormones in adaptation to water stress. In Adaptation of plants to water and high temperature stress Ed. By N.C. Turner, P.J. Kramer, A. Willy Inter-science Pub. pp. 155–172.

  • Bandurska H. 1991. The effect of proline on nitrate reductase activity in water-stressed barley leaves. Acta Physiol. Plant. 13: 3–11.

    CAS  Google Scholar 

  • Bandurska H., Gniazdowska-Skoczek H. 1995. Cell membrane stability in two barley genotypes under water stress conditions. Acta Soc. Bot. Pol., 64: 29–32.

    Google Scholar 

  • Bandurska H. 1998. Implication of ABA and proline on cell membrane injury of water deficit stressed barley seedlings. Acta Physiol. Plant. 20: 375–381.

    CAS  Google Scholar 

  • Bandurska H., Stroiński 2003. ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare ‘Maresi’) barley genotypes under water deficit conditions. Acta Physiol. Plant. 25: 000–000.

    Google Scholar 

  • Bates L.S., Waldren R.P., Teare J.D. 1973. Rapid determination of proline for water stress studies. Plant and Soil. 39: 205–207.

    Article  CAS  Google Scholar 

  • Bionti S., Fornalé S., Oksman-Caldentey K-M. Eeva M., Agistani S., Bagni N. 2000. Jasminates induce overaccumulation of methyl putrescine and conjugated polyamines in Hyascyamus muticus L. root cultures. Plant Cell Reports 19: 691–697.

    Article  Google Scholar 

  • Blechert S., Brodschelm W., Htlder S., Kammerer L., Kutchan T.M. Mueller MJ., Xia Z-Q., Zenk MH. 1995. The octadecanoid pathway: signal molecules for the regulation of secondary pathway. Proc. Natl. Acad. Sci. USA 92: 4099–4104.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert H.J., Jensen R.G. 1996. Strategies for engineering water-stress tolerance in plants. TIBTECH 14: 89–97.

    CAS  Google Scholar 

  • Chełkowska (Bandurska) H., Zielińska D. 1983. Influence of water stress and abscisic acid on free proline accumulation in barley leaves. Acta Agrobot. 36: 59–65.

    Google Scholar 

  • Chen T.Ch., Chou Ch.M., Kao Ch.H. 1994. Methyl jasmonate induces the accumulation of putrescine but not proline in detached rice leaves. J. Plant Physiol. 143: 119–124.

    CAS  Google Scholar 

  • Creelman R.A., Tierney M.L., Mullet J.E. 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89: 4938–4941.

    Article  PubMed  CAS  Google Scholar 

  • Creelman R.A., Mullet J.E. 1995. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92: 4114–4119.

    Article  PubMed  CAS  Google Scholar 

  • Creelman R.A., Mullet J.E. 1997. Biosynthesis and action of jasmotes in plants. Annu. Rev. Plant Physiol. Mol. Biol. 48: 355–381.

    Article  CAS  Google Scholar 

  • Dexcter S.T., Tottingham W.E., Graber L.F., 1932. Investigation of the hardiness of the plants by measurement of electrical conductivity. Plant Physiol. 7: 63–78.

    Google Scholar 

  • Evans N.H. 2003. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131:8–11.

    Article  PubMed  CAS  Google Scholar 

  • Flores H. E., Galston A.W. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701–706.

    PubMed  CAS  Google Scholar 

  • Franceschi V.R., Grimes H.D. 1991. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 83: 6745–6749.

    Article  Google Scholar 

  • Galli M.G., Levi M. 1982. Increased drought resistance induced by pre-treatment with abscisic acid at cellular level. New Phytol., 119: 9–32.

    Google Scholar 

  • Gehring C.A., Irving H.R., Mcconchie R., Parish R.W. 1997. Jasmonates induce intracellular alkalization and closure of Paphiopedilum guard cells. Annals of Botany 80: 485–489.

    Article  CAS  Google Scholar 

  • Gundlach H., Müller M.J., Kutchan T.M., Zenk M.H. 1992. Jasmonic acid is signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389–2393.

    Article  PubMed  CAS  Google Scholar 

  • Hare P.D., Cress W.A. 1997. Metabolic implications of stress-induced proline accumulation as an index of drought resistance using two contrasting barley cultivars. Plant Growth Regul. 21: 79–102.

    Article  CAS  Google Scholar 

  • Huget-Robert V., Sulpice R., Lefort C., Maerskaick V., Emery N., Larher F.R. 2003. The suppression of osmoinduced proline response of Brassica napus L. var oleifera leaf discs by polyunsaturated fatty acids and methyl-jasmonate. Plant Sci. 164: 119–127.

    Article  Google Scholar 

  • Kubiś J., Skoczek H., Krzywański Z. 1991. Exogenous polyamines alter the activity of proteases, RNAses and membrane permeability in wheat leaves under water stress conditions. Acta Physiol. Plant. 13: 139–146.

    Google Scholar 

  • Lee T-M., Lur H-S., Lin Y-H., Chu C. 1996. Physiological and biochemical changes related to methyl jasminate-induced chilling tolerance of rice (Oryza sativa) seedlings. Plant, Cell Environ. 19: 65–74.

    Article  CAS  Google Scholar 

  • Madar J.C. 1999. Effects of jasmonic acid, silver nitrate and L-AOPP on the distribution of free and conjugated polyamines in roots and shoots of S. tuberosum in vitro. J. Plant Physiol. 154: 79–88.

    Google Scholar 

  • Maslenkova L.T., Miteva T.S., Popova L.P. 1992. Changes in the polypeptide patterns of barley seedlings exposed to jasmonic acid. Plant Physiol. 98: 700–707.

    Article  PubMed  CAS  Google Scholar 

  • Mason H.S., Mullet J.E. 1990. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. The Plant Cell 2: 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Meyer A., Mirsch O., Buttner C., Dathe W., Sembdner G. 1984. Occurrance of plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 3: 1–8.

    Article  CAS  Google Scholar 

  • Moore R. 1990. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays Ann. Bot. 66: 281–283.

    PubMed  CAS  Google Scholar 

  • Pietrini F., Iannelli M.A., Massacci A. 2002. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ. 25: 1251–1261.

    Article  CAS  Google Scholar 

  • Rajagopal V., Anderson A.S. 1978. Does abscisic acid influence proline accumulation in stressed leaves. Planta 143: 85–88.

    Article  CAS  Google Scholar 

  • Saniewski M., Ueda J., Miyamoto K., Urbanek H. 2001. Interaction of jasmonates with ethylene and auxin regulation of some physiological processes in plants under stress conditions. Acta Physiol. Plant. 23, No 3, supplement pp. 12–14.

    Google Scholar 

  • Sembdner G., Pathier B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 569–89.

    Article  CAS  Google Scholar 

  • Sauter A., Davis W.J., Hartung W. 2001. The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp. Bot. 52: 1991–1997.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan C.Y. 1971. Techniques for measuring plant drought stress. In Drought Injury and Resistance in Crops. (Eds.) K.L. Larson and J.D. Eastin. Crop Sci. Soc. Am., Madison Wis.

    Google Scholar 

  • Tiburcio A.F., Campos J.L., Figueras X., Besford R.T. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 12: 331–340.

    Article  CAS  Google Scholar 

  • Wang S.Y. 1999. Methyl jasmonate reduces water stress in strawberry. J Plant Growth Regul. 18: 127–134.

    Article  PubMed  Google Scholar 

  • Weatherly P.E. 1950. Studies in water relation of cotton plants. I. The measurement of water deficits in leaves. New Phytol. 49: 81–97.

    Article  Google Scholar 

  • Wilkinson S., Davies S.W.J. 2002. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell Environ. 25: 195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was partly supported by the Polish Committee For Scientific Research, grant No 5 PO6A 036 18

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandurska, H., Stroiński, A. & Kubiś, J. The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant 25, 279–285 (2003). https://doi.org/10.1007/s11738-003-0009-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0009-0

Key words

Navigation