Skip to main content
Log in

Physiological and biochemical alterations imposed by Fusarium fujikuroi infection in aromatic and non-aromatic rice cultivars

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Bakanae is the major fungal disease of rice posing threat to rice production all over the world. In order to understand the physiological and biochemical basis of resistance, the disease free and Fusarium fujikuroi infected seedlings of two aromatic (PUSA 1121 and PUSA 1509) and two non-aromatic (PR 121 and PR 126) rice cultivars were evaluated. The seeds of rice cultivars were inoculated with the virulent isolate of F. fujikuroi. Percent disease incidence, percent field emergence, seedling length and biochemical traits of 25 days old seedlings raised from healthy (disease free) and pathogen inoculated seeds in the nursery were compared. The experimental design was RBD and data was analysed using tukey’s HSD test. The infection led to a significant decline in the chlorophyll content in the infected seedlings of the aromatic cultivars, whereas non-significant variation between healthy and infected seedling of non-aromatic rice cultivars was observed. Seed inoculation with the fungus resulted in significant increase in length of the infected seedlings in aromatic rice cultivars as compared to non-aromatic indicating the resistance response to the production of Gibberellic acid in non-aromatic rice cultivars. The endogenous GA enhanced significantly postinfection in the aromatic PUSA 1121 and PUSA 1509 seedlings. Post pathogenesis, the infected seedlings of aromatic cultivars retained lower level of total phenols. The depletion of phenols post infection in infected seedlings of aromatic cultivars may be due sugar depletion. Our results show that the higher total antioxidant and enzymatic activity in aromatic rice cultivars post infection could be a useful biochemical marker for screening the tolerance potential of rice cultivars against bakanae disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, H. K., Tanaka, T., Duke, S. O., Porter, J. K., Wray, E. M., Hodges, L., et al. (1994). Fumonisin-and AAL-toxin induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology,106, 1085–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adam, S., Castilla, N, P., & Cruz, C. M. V. (2018). Retrieved September 7, 2018, from http://www.knowledgebank.irri.org.

  • Amatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2012). Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology,134, 401–408.

    CAS  Google Scholar 

  • Ammajamma, R., & Patil, P. V. (2008). Biochemical factors imparting rust (Phakospora pachyrhizi) resistance in soybean, Karnataka. Journal of Agricultural Science,21, 65–69.

    Google Scholar 

  • Bashalah, M. O., Sulaiman, A. A. A., & Mohammad, S. (1984). Metabolic changes in the leaves of Solanum melongia affected with Alternaria tenuissima. Indian Phytopathology,37, 46–51.

    Google Scholar 

  • Bashyal, B. M., Aggarwal, R., Banerjee, S., Gupta, S., & Sharma, S. (2014). Pathogenicity, ecology and genetic diversity of the Fusarium spp. associated with an emerging bakanae disease of rice (Oryza sativa L.) in India. In R. N. Kharwar (Ed.), Microbial diversity and biotechnology in food security (pp. 307–314). Berlin: Springer.

    Google Scholar 

  • Dubois, M., Giles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry,28, 350–356.

    CAS  Google Scholar 

  • Ghazanfar, M. U., Javed, N., Wakil, W., & Iqbal, M. (2013). Screening of some fine and coarse rice varieties against bakanae disease. Journal of Agricultural Research,51, 41–49.

    Google Scholar 

  • Gilchrist, D. G. (1997). Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signalling. Cell Death and Differentiation,4, 689–698.

    CAS  PubMed  Google Scholar 

  • Guoliang, L., Shucheng, L., Zhiwei, S., Lian, X., Guang, C., & Jinmao, Y. (2014). A simple and sensitive HPLC method based on pre-column fluorescence labelling for multiple classes of plant growth regulator determination in food samples. Food Chemistry,170, 123–130.

    Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from the leaf tissues without maceration using dimethyl sulphoxide. Canadian Journal of Botany,57, 1332–1334.

    CAS  Google Scholar 

  • Hossain, K. S., Miah, M. A. T., & Bashar, M. A. (2011). Preferred rice varieties, seed source, disease incidence and loss assessment in bakanae disease. Journal of Agrometeorology for Environment,5, 125–128.

    Google Scholar 

  • Hossain, K. S., Miah, M. A. T., & Bashar, M. A. (2013). New method for screening rice varieties against bakanae disease. Bangladesh Journal of Botany,42(2), 315–320.

    Google Scholar 

  • Hwang, I. S., Kang, W. R., Hwang, S. C. B., Yun, S. H., & Ahn, I. P. (2013). Evaluation of Bakanae disease progression caused by Fusarium fujikuroi in Oryzasativa L. Journal of Microbiology,51, 858–865.

    CAS  Google Scholar 

  • Kandakoor, S. B., Khan, H. K., Chakravarthy, A. K., Kumar, C. T. A., & Venkataravana, P. (2014). Biochemical constituents influencing thrips resistance in groundnut germplasm. Journal of Environment Biology,35, 675–681.

    Google Scholar 

  • Kaur, G., & Mehrotra, R. S. (1990). Biochemical studies in pigeon pea varieties resistant and susceptible to Phytophothora blight. Plant Disease Research,5, 122–125.

    Google Scholar 

  • Kirk, J. T. O., & Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effects of actidione. Biochemical and Biophysical Research Communications,22, 523–530.

    Google Scholar 

  • Kuzniak, E., & Sklodowska, M. (2005). Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta,222, 192–200.

    CAS  PubMed  Google Scholar 

  • Lee, Y. P., Takahashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry, 14(1), 71–77.

    CAS  Google Scholar 

  • Lee, D. H., Kim, Y. S., & Lee, C. B. (2001). The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). Journal of Plant Physiology,158, 737–745.

    CAS  Google Scholar 

  • Li, G., You, J., Song, C., Sun, Z., & Xia, L. (2011). A developed pre-column derivatization method for the determination of free fatty acids in edible oils by reversed phase HPLC with fluorescence detection and its application to Lycium barbarum seed oil. Food Chemistry,125(4), 1365–1372.

    CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folinphenol reagent. Journal of Biology and Chemistry,193, 265–275.

    CAS  Google Scholar 

  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of Pyragallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry,47, 469–474.

    CAS  PubMed  Google Scholar 

  • Matic, S., Gullino, L. M., & Spadaro, D. (2017). The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Frontiers in Bioscience,9, 333–344.

    Google Scholar 

  • Murata, T., Akazawa, T., & Furuchi, S. (1968). Enzymic mechanism of starch breakdown in germinating rice seeds I. An analytical study. Plant Physiology,43, 1899–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murria, S., Kaur, N., Arora, N. K., & Mahal, A. K. (2018). Field reaction and metabolic alterations in grape (Vitis vinifera L.) varieties infested with anthracnose. Scientia Horticulturae,235, 286–293.

    CAS  Google Scholar 

  • Panda, S. K. (2007). Chromium mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology,164, 1419–1428.

    CAS  PubMed  Google Scholar 

  • Pannu, P. P. S., Kaur, J., Singh, G., & Kaur, J. (2012). Survival of Fusarium moniliforme causing foot rot of rice and its virulence on different genotypes of rice and basmati rice. Indian Phytopathology,65, 149–209.

    Google Scholar 

  • Patel, A., Patel, A., Patel, A., & Patel, N. M. (2010). Estimation of flavonoid, polyphenolic content and in vitro antioxidant capacity of leaves of Tephrosia purpurea Linn. (Leguminosae). International Journal of Pharmaceutical Science and Research,1(1), 66–77.

    CAS  Google Scholar 

  • Puyam, A., Pannu, P. P. S., Kaur, J., & Shikha, S. (2017). Cultural, morphological and molecular variability of Sheld causing foot rot disease of basmati rice in Punjab. Journal of Mycology and Plant Pathology,47(4), 369–381.

    Google Scholar 

  • Saleh, L., & Plieth, C. (2009). Fingerprinting antioxidative activities in plants. Plant Methods,5, 2.

    PubMed  PubMed Central  Google Scholar 

  • Sang, W. G., Pyeong, K. J. H., Shin, H. S. C., Myung, C. S., Park, H. K., Lee, G. H., et al. (2015). Physio biochemical characterisation of bakanae disease tolerant rice. Journal of Korean Society for International Agriculture,27, 460–468.

    Google Scholar 

  • Sathiyanathan, S., & Vidhyashekaran, P. (1981). Role of phenolics in brown spot disease resistance in rice. Indian Phytopathology,34(2), 225–227.

    CAS  Google Scholar 

  • Senthil, V., Ramasamy, P., Elaiyaraja, C., & Ramola, E. A. (2010). Some photochemical properties affected by the infection of leaf spot disease of Cucumis sativus L. caused by Penicillum notatum. African Journal of Basic and Applied Science,2, 64–70.

    Google Scholar 

  • Shannon, L. M., Kay, E., & Lew, J. Y. (1966). Peroxidase isozymes from horse radish roots: Isolation and physical properties. Journal of Biology and Chemistry,241, 2166–2172.

    CAS  Google Scholar 

  • Sunani, S. K., Bashyal, B. M., Rawat, K., Manjunatha, C., Sharma, S., Prakash, G., et al. (2019). Development of PCR and loop mediated isothermal amplification assay for the detection of bakanae pathogen Fusarium fujikuroi. European Journal of Plant Pathology,154, 715.

    CAS  Google Scholar 

  • Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus domestica and the quantitative analysis of phenolic constituents. Journal of Science and Food Agriculture,10, 63–68.

    CAS  Google Scholar 

  • Taheri, P. A., Irannejad, M., & Goldani, T. S. (2014). Oxidative burst and enzymatic antioxidant systems in rice plants during interaction with Alternaria alternata. European Journal of Plant Pathology,140, 829–839.

    CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dang, J. L. (2006). Reactive oxygen species signalling in response to pathogens. Plant Physiology,141, 373–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tudzynski, B., Mihlan, M., Rojas, M. C., Linnemannstons, P., Gaskin, P., & Hedden, P. (2003). Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi–des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. Journal of Biology Chemistry,278, 28635–28643.

    CAS  Google Scholar 

  • Vargas, W. A., Martin, J. M., Rech, G. E., Rivera, L. P., Benito, E. P., Diaz-Minguez, J. M., et al. (2012). Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotrichum graminicola in maize. Plant Physiology,4, 457–467.

    Google Scholar 

  • Velazhahan, R., Jayaraj, J., Salaheddin, K., Kumar, S. R., & Muthukrishnan, S. (2006). Xanthomonas oryzae pv. Oryzae infection triggers accumulation of phenolics, defense related enzymes and thaumatin-like proteins in rice leaves. Archives of phytopathology and plant protection,39(5), 329–339.

    CAS  Google Scholar 

  • Vidhyasekaran, P. (2008). Induction and evasion of pathogenesis-related proteins. In: Fungal pathogenesis in plants and crops: Molecular biology and host defense mechanisms, (2nd ed., pp. 345–409). CRC Press: Boca Raton.

    Google Scholar 

  • Wu, C., Miloslavskaya, I., Demontis, S., Maestro, R., & Galaktionov, K. (2004). Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature,432, 640–645.

    CAS  PubMed  Google Scholar 

  • Zainudin, N. A. I. M., Razak, A. A., & Salleh, B. (2008). Bakanae disease of rice in Malaysia and Indonesia: Etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. Journal of Plant Protection and Research,48, 475–485.

    CAS  Google Scholar 

  • Zhou, B., Chen, Z. D. U. L., Ye, X., & Li, N. (2012). Correlation between resistance of eggplant and defense-related enzymes and biochemical substances of leaves. African Journal of Biotechnology,11(74), 13896–13902.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Chhabra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhabra, R., Kaur, N. & Bala, A. Physiological and biochemical alterations imposed by Fusarium fujikuroi infection in aromatic and non-aromatic rice cultivars. Plant Physiol. Rep. 24, 563–575 (2019). https://doi.org/10.1007/s40502-019-00486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00486-4

Keywords

Navigation