Skip to main content

Advertisement

Log in

Current Scenario and Strategies to Tackle Cardiovascular Disease Risk in HIV Geriatrics

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Owing to the advent of antiretroviral (ART) drugs, human immunodeficiency virus (HIV) has become a controllable infection, but pernicious health outcomes due to the infection are inevitable. Older people living with HIV (PLHIV) may face more problems than younger PLHIV, such as financial constraints, physical strength, and adaptability. Cardiovascular diseases (CVDs) are a major group of age-related disorders. A plethora of studies have reported the contribution of HIV to the development of various CVDs. Furthermore, the risk of CVD in the geriatric HIV population is higher than in the younger population. CVDs can be attributed to several risk factors, including immune dysfunction, damage to the endothelial cells lining blood vessels, abnormal lipid levels, high blood pressure, obesity, diabetes, smoking, excessive alcohol consumption, sleep disorders, persistent inflammation, compromised immune function, and the use of ART in PLHIV. Despite the availability of data on CVD risk in the general population, the knowledge gap regarding the risk of CVD in geriatric PLHIV requires further exploration. Furthermore, the key strategies to overcome the risk of CVD in geriatrics are lifestyle changes and dietary management, followed by the selection of appropriate antiretroviral drugs and statins for the treatment of elderly PLHIV. This narrative review briefly discusses the epidemiology, risk factors, mechanisms, and CVD risk in older PLHIV, and strategies to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wing EJ. The aging population with HIV infection. Trans Am Clin Climatol Assoc. 2017;128:131.

    PubMed Central  Google Scholar 

  2. Turner J, Bansi L, Gilson R, Gazzard B, Walsh J, Pillay D, et al. The prevalence of hepatitis C virus (HCV) infection in HIV-positive individuals in the UK–trends in HCV testing and the impact of HCV on HIV treatment outcomes. J Viral Hepat. 2010;17:569–77.

    Article  PubMed  CAS  Google Scholar 

  3. Sudano I, Spieker LE, Noll G, Corti R, Weber R, Lüscher TF. Cardiovascular disease in HIV infection. Am Heart J. 2006;151:1147–55.

    Article  PubMed  Google Scholar 

  4. Crothers K, Butt AA, Gibert CL, Rodriguez-Barradas MC, Crystal S, Justice AC, Veterans Aging Cohort 5 Project Team. Increased COPD among HIV-positive compared to HIV-negative veterans. Chest. 2006;130(5):1326–33.

  5. Shah A, Stelzle D, Lee K, Beck E, Alam S, Clifford S. Global burden of atherosclerotic cardiovascular disease in people living with the human immunodeficiency virus. Circulation. 2018;138:1100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feinstein MJ, Bahiru E, Achenbach C, Longenecker CT, Hsue P, So-Armah K, et al. Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. Am J Cardiol. 2016;117:214–20.

    Article  PubMed  Google Scholar 

  7. Martin-Iguacel R, Llibre JM, Friis-Moller N. Risk of cardiovascular disease in an aging HIV population: where are we now? Current Hiv/Aids Reports. 2015;12:375–87.

    Article  PubMed  CAS  Google Scholar 

  8. Thiara DK, Liu CY, Raman F, Mangat S, Purdy JB, Duarte HA, et al. Abnormal myocardial function is related to myocardial steatosis and diffuse myocardial fibrosis in HIV-infected adults. J Infect Dis. 2015;212:1544–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Freiberg M, Chang C, Kuller L, Skanderson M, Lowy E, Kraemer K, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013;173(8):614–22. https://doi.org/10.1001/jamainternmed.2013.3728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sico J, Chang C, So-Armah K, Justice A, Hylek E, Skanderson M, et al. Veterans aging cohort study. HIV status and the risk of ischemic stroke among men. Neurology. 2015;84:1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. UNAIDS. UNAIDS reports that more than 10% of adults living with HIV in low- and middle-income countries are aged 50 and over [press release]. GENEVA: UNAIDS; 2013.

    Google Scholar 

  12. Barbaro G, Di Lorenzo G, Grisorio B, Barbarini G. for the Gruppo Italiano per lo Studio Cardiologico dei Pazienti Affetti da AIDS. Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. N Engl J Med. 1998;339:1093–9.

    Article  PubMed  CAS  Google Scholar 

  13. Vance DE, Cody SL. Predictions of geriatric HIV in 2030. Lancet Infect. Dis. 2015;15:753–4.

    Article  PubMed  Google Scholar 

  14. HIV facts & figures India: National AIDS Control Organisation; 2019 [Available from: http://naco.gov.in/hiv-facts-figures. Accessed 10 Jan 2023.

  15. Kumar P, Sahu D, Chandra N, Kumar A, Rajan S. Aging of HIV epidemic in India: Insights from HIV estimation modeling under the National AIDS Control Programme. Indian J Public Health. 2020;64:76.

    Article  Google Scholar 

  16. Effros RB, Fletcher CV, Gebo K, Halter JB, Hazzard WR, Horne FM, et al. Workshop on HIV infection and aging: What is known and future research directions. Clin Infect Dis. 2008;47:542.

    Article  PubMed  Google Scholar 

  17. Pereira M, Canavarro MC. Gender and age differences in quality of life and the impact of psychopathological symptoms among HIV-infected patients. AIDS Behav. 2011;15:1857–69.

    Article  PubMed  Google Scholar 

  18. Gebo KA. HIV and Aging. Drugs & aging. 2006;23:897–913.

    Article  Google Scholar 

  19. Bhavan KP, Kampalath VN, Overton ET. The aging of the HIV epidemic. Curr HIV/AIDS Rep. 2008;5:150–8.

    Article  PubMed  Google Scholar 

  20. Kirk JB, Goetz MB. Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc. 2009;57:2129–38.

    Article  PubMed  Google Scholar 

  21. Longevity TLH. Ageing with HIV. Elsevier; 2022.

    Google Scholar 

  22. McGettrick P, Alvarez Barco E, Mallon PW. Ageing with HIV. In: Healthcare. MDPI; 2018.

    Google Scholar 

  23. Negin J, Martiniuk A, Cumming RG, Naidoo N, Phaswana-Mafuya N, Madurai L, et al. Prevalence of HIV and chronic comorbidities among older adults. AIDS (London, England). 2012;26:S55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guaraldi G, Milic J, Mussini C. Aging with HIV. Curr HIV/AIDS Rep. 2019;16:475–81.

    Article  PubMed  Google Scholar 

  25. Justice AC, Gordon KS, Romero J, Edelman EJ, Garcia BJ, Jones P, et al. Polypharmacy-associated risk of hospitalisation among people ageing with and without HIV: An observational study. Lancet Healthy Longev. 2021;2:e639–e50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wyman MF, Shiovitz-Ezra S, Bengel J. Ageism in the health care system: Providers, patients, and systems. In: Contemporary perspectives on ageism. Cham: Springer; 2018. p. 193–212.

    Chapter  Google Scholar 

  27. Islam F, Wu J, Jansson J, Wilson D. Relative risk of cardiovascular disease among people living with HIV: A systematic review and meta-analysis. HIV Med. 2012;13:453–68.

    Article  PubMed  CAS  Google Scholar 

  28. Tseng ZH, Secemsky EA, Dowdy D, Vittinghoff E, Moyers B, Wong JK, et al. Sudden cardiac death in patients with human immunodeficiency virus infection. J Am Coll Cardiol. 2012;59:1891–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beckman JA, Duncan MS, Alcorn CW, So-Armah K, Butt AA, Goetz MB, et al. Association of human immunodeficiency virus infection and risk of peripheral artery disease. Circulation. 2018;138:255–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr. 1999;2012(60):351.

    Google Scholar 

  31. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metabol. 2007;92:2506–12.

    Article  CAS  Google Scholar 

  32. Currier JS, Taylor A, Boyd F, Dezii CM, Kawabata H, Burtcel B, et al. Coronary heart disease in HIV-infected individuals. J Acquir Immune Defic Syndr. 2003;33:506–12.

    Article  PubMed  Google Scholar 

  33. Durand M, Sheehy O, Baril J-G, Lelorier J, Tremblay CL. Association between HIV infection, antiretroviral therapy, and risk of acute myocardial infarction: a cohort and nested case–control study using Quebec's public health insurance database. J Acquir Immune Defic Syndr. 2011;57:245–53.

    Article  PubMed  Google Scholar 

  34. Klein D, Hurley LB, Quesenberry CP Jr, Sidney S. Do protease inhibitors increase the risk for coronary heart disease in patients with HIV-1 infection? J Acquir Immune Defic Syndr. 2002;30:471–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lang S, Mary-Krause M, Cotte L, Gilquin J, Partisani M, Simon A, et al. French Hospital Database on HIV-ANRS CO4. Increased risk of myocardial infarction in HIV-infected patients in France, relative to the general population. Aids. 2010;24:1228–30.

    Article  PubMed  Google Scholar 

  36. Obel N, Thomsen HF, Kronborg G, Larsen CS, Hildebrandt PR, Sørensen HT, et al. Ischemic heart disease in HIV-infected and HIV-uninfected individuals: A population-based cohort study. Clin Infect Dis. 2007;44:1625–31.

    Article  PubMed  Google Scholar 

  37. Önen NF, Overton ET, Seyfried W, Stumm ER, Snell M, Mondy K, et al. Aging and HIV infection: A comparison between older HIV-infected persons and the general population. HIV Clin Trials. 2010;11:100–9.

    Article  PubMed  Google Scholar 

  38. Group DS. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356:1723–35.

    Article  Google Scholar 

  39. Dakum P, Avong YK, Okuma J, Sorungbe T, Jatau B, Nedmbi N, Odutola MK, Abimiku A, Mensah C, Kayode GA. Prevalence and risk factors for obesity among elderly patients living with HIV/AIDS in a low-resource setting. Medicine. 2021;100(15):e25399. https://doi.org/10.1097/MD.0000000000025399.

  40. Koethe JR, Jenkins CA, Lau B, Shepherd BE, Justice AC, Tate JP, et al. Rising obesity prevalence and weight gain among adults starting antiretroviral therapy in the United States and Canada. AIDS Res Hum Retroviruses. 2016;32:50–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yuh B, Tate J, Butt AA, Crothers K, Freiberg M, Leaf D, et al. Weight change after antiretroviral therapy and mortality. Clin Infect Dis. 2015;60:1852–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bakal DR, Coelho LE, Luz PM, Clark JL, De Boni RB, Cardoso SW, et al. Obesity following ART initiation is common and influenced by both traditional and HIV-/ART-specific risk factors. J Antimicrob Chemother. 2018;73:2177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Anuurad E, Bremer A, Berglund L. HIV protease inhibitors and obesity. Curr Opin Endocrinol Diabetes Obes. 2010;17:478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hernandez D, Kalichman S, Cherry C, Kalichman M, Washington C, Grebler T. Dietary intake and overweight and obesity among persons living with HIV in Atlanta Georgia. AIDS Care. 2017;29:767–71.

    Article  PubMed  Google Scholar 

  45. WHO. Obesity and overweight. WHO; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 10 Jan 2023.

    Google Scholar 

  46. Morse CG, Kovacs JA. Metabolic and skeletal complications of HIV infection: The price of success. Jama. 2006;296:844–54.

    Article  PubMed  CAS  Google Scholar 

  47. Koethe JR, Lagathu C, Lake JE, Domingo P, Calmy A, Falutz J, et al. HIV and antiretroviral therapy-related fat alterations. Nat Rev Dis Primers. 2020;6:1–20.

    Google Scholar 

  48. Guehi C, Badjé A, Gabillard D, Ouattara E, Koulé SO, Moh R, et al. High prevalence of being overweight and obese HIV-infected persons, before and after 24 months on early ART in the ANRS 12136 Temprano Trial. AIDS Res Ther. 2016;13:1–12.

    Article  Google Scholar 

  49. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: The data collection on adverse events of anti-HIV drugs (D: A: D) study. Diabetes Care. 2008;31:1224–9.

    Article  PubMed  Google Scholar 

  50. Reingold JS, Wanke C, Kotler DP, Lewis CE, Tracy R, Heymsfield S, et al. Association of HIV infection and HIV/HCV coinfection with C-reactive protein levels: The fat redistribution and metabolic change in HIV infection (FRAM) study. J Acquir Immune Defic Syndr. 1999;2008(48):142.

    Google Scholar 

  51. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: Part 1—full report. J Clin Lipidol. 2015;9:129–69.

    Article  PubMed  Google Scholar 

  52. Buchacz K, Baker RK, Palella FJ Jr, Shaw L, Patel P, Lichtenstein KA, et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir Ther. 2013;18:65–75.

    Article  PubMed  Google Scholar 

  53. High Cholesterol Facts | CdC.gov [Internet]. Centers for Disease Control and Prevention. 2023. Available from: https://www.cdc.gov/cholesterol/facts.htm#:~:text=High%20total%20cholesterol%20in%20the%20United%20States&text=Nearly%2094%20million%20U.S.%20adults,levels%20above%20240%20mg%2FdL. Acessed on 31 Aug 2023.

  54. Rasheed S, Yan JS, Lau A, Chan AS. HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: A proteomics study. PloS One. 2008;3:e3003.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pedersen KK, Pedersen M, Trøseid M, Gaardbo JC, Lund TT, Thomsen C, et al. Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. 2013;64:425–33.

    Article  PubMed  CAS  Google Scholar 

  56. Timmons T, Shen C, Aldrovandi G, Rollie A, Gupta SK, Stein JH, et al. Microbial translocation and metabolic and body composition measures in treated and untreated HIV infection. AIDS Res Hum Retroviruses. 2014;30:272–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. U.S. Department of Health and Human Services HRaSA. Guide for HIV/AIDS clinical care USA: U.S. Department of Health and Human Services, Health Resources and Services Administration; 2021 [Available from: https://npin.cdc.gov/publication/guide-hivaids-clinical-care-0. Accessed 11 Jan 2023.

  58. Wohl D, Scherzer R, Heymsfield S, Simberkoff M, Sidney S, Bacchetti P, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 1999;2008(48):44.

    Google Scholar 

  59. Fiseha T, Alemu W, Dereje H, Tamir Z, Gebreweld A. Prevalence of dyslipidaemia among HIV-infected patients receiving combination antiretroviral therapy in North Shewa, Ethiopia. PloS one. 2021;16:e0250328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ghandehari H, Kamal-Bahl S, Wong ND. Prevalence and extent of dyslipidemia and recommended lipid levels in US adults with and without cardiovascular comorbidities: The National Health and Nutrition Examination Survey 2003-2004. Am Heart J. 2008;156:112–9.

    Article  PubMed  CAS  Google Scholar 

  61. Sinclair A, Morley JE, Rodriguez-Mañas L, Paolisso G, Bayer T, Zeyfang A, et al. Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. J Am Med Dir Assoc. 2012;13:497–502.

    Article  PubMed  Google Scholar 

  62. Fichtenbaum CJ, Hadigan C, Kotler D, Pieronej G, Sax P, Corklin R. Treating morphologic and metabolic complications in HIV-infected patients on antiretroviral therapy. IAPAC Mon. 2005;38–46.

  63. Norris A, Dreher HM. Lipodystrophy syndrome: The morphologic and metabolic effects of antiretroviral therapy in HIV infection. J Assoc Nurses AIDS Care. 2004;15:46–64.

    Article  PubMed  Google Scholar 

  64. Dagogo-Jack S. HIV therapy and diabetes risk. Diabetes Care. 2008;31:1267–8.

    Article  PubMed  Google Scholar 

  65. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med. 2000;133:592–9.

    Article  PubMed  CAS  Google Scholar 

  66. Smith JC, Evans L, Wilkinson I, Goodfellow J, Cockcroft J, Scanlon M, et al. Effects of GH replacement on endothelial function and large-artery stiffness in GH-deficient adults: A randomized, double-blind, placebo-controlled study. Clin Endocrinol (Oxf). 2002;56:493–501.

    Article  PubMed  CAS  Google Scholar 

  67. Vigouroux C, Maachi M, Nguyên T-H, Coussieu C, Gharakhanian S, Funahashi T, et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. Aids. 2003;17:1503–11.

    Article  PubMed  CAS  Google Scholar 

  68. Gazzaruso C, Bruno R, Garzaniti A, Giordanetti S, Fratino P, Sacchi P, et al. Hypertension among HIV patients: Prevalence and relationships to insulin resistance and metabolic syndrome. J Hypertens. 2003;21:1377–82.

    Article  PubMed  CAS  Google Scholar 

  69. Gakidou E, Afshin A, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulle AM, Abera SF, Aboyans V, Abu-Raddad LJ. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1345–422.

    Article  Google Scholar 

  70. Nduka C, Stranges S, Sarki A, Kimani P, Uthman O. Evidence of increased blood pressure and hypertension risk among people living with HIV on antiretroviral therapy: A systematic review with meta-analysis. J Hum Hypertens. 2016;30:355–62.

    Article  PubMed  CAS  Google Scholar 

  71. Nüesch R, Wang Q, Elzi L, Bernasconi E, Weber R, Cavassini M, et al. Risk of cardiovascular events and blood pressure control in hypertensive HIV-infected patients: Swiss HIV Cohort Study (SHCS). J Acquir Immune Defic Syndr. 2013;62:396–404.

    Article  PubMed  Google Scholar 

  72. Peck RN, Shedafa R, Kalluvya S, Downs JA, Todd J, Suthanthiran M, et al. Hypertension, kidney disease, HIV and antiretroviral therapy among Tanzanian adults: A cross-sectional study. BMC Med. 2014;12:1–11.

    Article  Google Scholar 

  73. Seaberg EC, Muñoz A, Lu M, Detels R, Margolick JB, Riddler SA, et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. Aids. 2005;19:953–60.

    Article  PubMed  Google Scholar 

  74. Xu Y, Chen X, Wang K. Global prevalence of hypertension among people living with HIV: A systematic review and meta-analysis. J Am Soc Hypertens. 2017;11:530–40.

    Article  PubMed  Google Scholar 

  75. Nguyen KA, Peer N, Mills EJ, Kengne AP. Burden, determinants, and pharmacological management of hypertension in HIV-positive patients and populations: A systematic narrative review. AIDS Rev. 2015;17:83–95.

    PubMed  Google Scholar 

  76. van Zoest RA, Wit FW, Kooij KW, van der Valk M, Schouten J, Kootstra NA, et al. Higher prevalence of hypertension in HIV-1-infected patients on combination antiretroviral therapy is associated with changes in body composition and prior stavudine exposure. Clin Infect Dis. 2016;63:205–13.

    Article  PubMed  Google Scholar 

  77. Phillips AN, Carr A, Neuhaus J, Visnegarwala F, Prineas R, Burman WJ, et al. Interruption of antiretroviral therapy and risk of cardiovascular disease in persons with HIV-1 infection: Exploratory analyses from the SMART trial. Antivir Ther. 2008;13:177–88.

    Article  PubMed  CAS  Google Scholar 

  78. Armah KA, Chang C-CH, Baker JV, Ramachandran VS, Budoff MJ, Crane HM, et al. Prehypertension, hypertension, and the risk of acute myocardial infarction in HIV-infected and-uninfected veterans. Clin Infect Dis. 2014;58:121–9.

    Article  PubMed  Google Scholar 

  79. Bloomfield GS, Hogan JW, Keter A, Holland TL, Sang E, Kimaiyo S, et al. Blood pressure level impacts risk of death among HIV seropositive adults in Kenya: A retrospective analysis of electronic health records. BMC Infect Dis. 2014;14:1–10.

    Article  Google Scholar 

  80. Boccara F, Auclair M, Cohen A, Lefèvre C, Prot M, Bastard J-P, et al. HIV protease inhibitors activate the adipocyte renin angiotensin system. Antivir Ther. 2010;15:363–75.

    Article  PubMed  CAS  Google Scholar 

  81. Manner IW, Trøseid M, Oektedalen O, Baekken M, Os I. Low nadir CD4 cell count predicts sustained hypertension in HIV-infected individuals. J Clin Hypertens.. 2013;15:101–6.

    Article  CAS  Google Scholar 

  82. Manner I, Baekken M, Kvale D, Oektedalen O, Pedersen M, Nielsen S, et al. Markers of microbial translocation predict hypertension in HIV-infected individuals. HIV Med. 2013;14:354–61.

    Article  PubMed  CAS  Google Scholar 

  83. Crane H, Grunfeld C, Harrington R, Uldall K, Ciechanowski P, Kitahata M. Lipoatrophy among HIV-infected patients is associated with higher levels of depression than lipohypertrophy. HIV Med. 2008;9:780–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Maffongelli G, Alteri C, Gentilotti E, Bertoli A, Ricciardi A, Malagnino V, et al. Impact of HIV-1 tropism on the emergence of non-AIDS events in HIV-infected patients receiving fully suppressive antiretroviral therapy. AIDS (London, England). 2016;30:731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Amar J, Ruidavets JB, Sollier CBD, Bongard V, Boccalon H, Chamontin B, et al. Soluble CD14 and aortic stiffness in a population-based study. J Hypertens. 2003;21:1869–77.

    Article  PubMed  CAS  Google Scholar 

  86. Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003;284:L899–914.

    Article  PubMed  CAS  Google Scholar 

  87. Blodget E, Shen C, Aldrovandi G, Rollie A, Gupta SK, Stein JH, et al. Relationship between microbial translocation and endothelial function in HIV infected patients. Public Library of Science San Francisco, USA; 2012.

    Book  Google Scholar 

  88. Chun T-W, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197:714–20.

    Article  PubMed  CAS  Google Scholar 

  89. Lund D, Brooks RM, Faraci FM, Heistad DD. Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. Am J Physiol Heart Circ Physiol. 2007;293:H3726–H31.

    Article  PubMed  CAS  Google Scholar 

  90. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non–AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014;210:1248–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhang Z-H, Yu Y, Wei S-G, Felder RB. Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD (P) H oxidase-dependent mitogen-activated protein kinase signaling. J Hypertens. 2010;28:806–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Desai S, Landay A. Early immune senescence in HIV disease. Curr HIV/AIDS Rep. 2010;7:4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Almodovar S, Hsue PY, Morelli J, Huang L, Flores SC. Pathogenesis of HIV-associated pulmonary hypertension: potential role of HIV-1 Nef. Proc Am Thorac Soc. 2011;8:308–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Masenga SK, Hamooya BM, Nzala S, Kwenda G, Heimburger DC, Mutale W, et al. Patho-immune mechanisms of hypertension in HIV: A systematic and thematic review. Curr Hypertens Rep. 2019;21:1–19.

    Article  CAS  Google Scholar 

  95. Fahme SA, Bloomfield GS, Peck R. Hypertension in HIV-infected adults: Novel pathophysiologic mechanisms. Hypertension. 2018;72:44–55.

    Article  PubMed  CAS  Google Scholar 

  96. Reid S, Dwyer J. Insomnia in HIV infection: A systematic review of prevalence, correlates, and management. Psychosom Med. 2005;67:260–9.

    Article  PubMed  Google Scholar 

  97. Lee KA, Gay C, Portillo CJ, Coggins T, Davis H, Pullinger CR, et al. Types of sleep problems in adults living with HIV/AIDS. J Clin Sleep Med. 2012;8:67–75.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Crum-Cianflone NF, Roediger MP, Moore DJ, Hale B, Weintrob A, Ganesan A, et al. Prevalence and factors associated with sleep disturbances among early-treated HIV-infected persons. Clin Infect Dis. 2012;54:1485–94.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rubinstein ML, Selwyn PA. High prevalence of insomnia in an outpatient population with HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;19:260–5.

    Article  PubMed  CAS  Google Scholar 

  100. Crowley K. Sleep and sleep disorders in older adults. Neuropsychol Rev. 2011;21:41–53.

    Article  PubMed  Google Scholar 

  101. Ohayon MM. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med Rev. 2002;6:97–111.

    Article  PubMed  Google Scholar 

  102. Hillman DR, Murphy AS, Antic R, Pezzullo L. The economic cost of sleep disorders. Sleep. 2006;29:299–305.

    Article  PubMed  Google Scholar 

  103. Sofi F, Cesari F, Casini A, Macchi C, Abbate R, Gensini GF. Insomnia and risk of cardiovascular disease: A meta-analysis. Eur J Prev Cardiol. 2014;21:57–64.

    Article  PubMed  Google Scholar 

  104. Parthasarathy S, Vasquez MM, Halonen M, Bootzin R, Quan SF, Martinez FD, et al. Persistent insomnia is associated with mortality risk. Am J Med. 2015;128(268-75):e2.

    Google Scholar 

  105. Fernandez-Mendoza J, Vgontzas AN, Liao D, Shaffer ML, Vela-Bueno A, Basta M, et al. Insomnia with objective short sleep duration and incident hypertension: The Penn State Cohort. Hypertension. 2012;60:929–35.

    Article  PubMed  CAS  Google Scholar 

  106. Vgontzas AN, Liao D, Bixler EO. Insomnia and hypertension. Sleep. 2009;32:1547.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ogunbanjo B. Sexually transmitted diseases in Nigeria. A review of the present situation. West Afr J Med. 1989;8:42–9.

    PubMed  CAS  Google Scholar 

  108. Suka M, Yoshida K, Sugimori H. Persistent insomnia is a predictor of hypertension in Japanese male workers. J Occup Health. 2003;45:344–50.

    Article  PubMed  Google Scholar 

  109. Gangwisch JE, Malaspina D, Posner K, Babiss LA, Heymsfield SB, Turner JB, et al. Insomnia and sleep duration as mediators of the relationship between depression and hypertension incidence. Am J Hypertens. 2010;23:62–9.

    Article  PubMed  Google Scholar 

  110. Leineweber C, Kecklund G, Janszky I, Åkerstedt T, Orth-Gomér K. Poor sleep increases the prospective risk for recurrent events in middle-aged women with coronary disease: The Stockholm Female Coronary Risk Study. J Psychosom Res. 2003;54:121–7.

    Article  PubMed  Google Scholar 

  111. Li Y, Zhang X, Winkelman JW, Redline S, Hu FB, Stampfer M, et al. Association between insomnia symptoms and mortality: A prospective study of US men. Circulation. 2014;129:737–46.

    Article  PubMed  Google Scholar 

  112. Mallon L, Broman JE, Hetta J. Sleep complaints predict coronary artery disease mortality in males: A 12-year follow-up study of a middle-aged Swedish population. J Intern Med. 2002;251:207–16.

    Article  PubMed  CAS  Google Scholar 

  113. Meisinger C, Heier M, Löwel H, Schneider A, Döring A. Sleep duration and sleep complaints and risk of myocardial infarction in middle-aged men and women from the general population: The MONICA/KORA Augsburg cohort study. Sleep. 2007;30:1121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32:1484–92.

    Article  PubMed  Google Scholar 

  115. Laugsand LE, Vatten LJ, Platou C, Janszky I. Insomnia and the risk of acute myocardial infarction: A population study. Circulation. 2011;124:2073–81.

    Article  PubMed  Google Scholar 

  116. Coryell VT, Ziegelstein RC, Hirt K, Quain A, Marine JE, Smith MT. Clinical correlates of insomnia in patients with acute coronary syndrome. Int Heart J. 2013;54:258–65.

    Article  PubMed  Google Scholar 

  117. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017;17:1–10.

    Article  Google Scholar 

  118. Marzolini C, Back D, Weber R, Furrer H, Cavassini M, Calmy A, et al. Ageing with HIV: Medication use and risk for potential drug–drug interactions. J Antimicrob Chemother. 2011;66:2107–11.

    Article  PubMed  CAS  Google Scholar 

  119. Gleason LJ, Luque AE, Shah K. Polypharmacy in the HIV-infected older adult population. Clin Interv Aging. 2013;8:749.

    PubMed  PubMed Central  Google Scholar 

  120. Moore HN, Mao L, Oramasionwu CU. Factors associated with polypharmacy and the prescription of multiple medications among persons living with HIV (PLWH) compared to non-PLWH. AIDS Care. 2015;27:1443–8.

    Article  PubMed  Google Scholar 

  121. Gimeno-Gracia M, Crusells-Canales MJ, Armesto-Gómez FJ, Compaired-Turlán V, Rabanaque-Hernández MJ. Polypharmacy in older adults with human immunodeficiency virus infection compared with the general population. Clin Interv Aging. 2016;11:1149.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guaraldi G, Menozzi M, Zona S, Calcagno A, Silva AR, Santoro A, et al. Impact of polypharmacy on antiretroviral prescription in people living with HIV. J Antimicrob Chemother. 2017;72:511–4.

    Article  PubMed  CAS  Google Scholar 

  123. Thomas H, Sweetnam P, Janchawee B, Luscombe D. Polypharmacy among older men in South Wales. Eur J Clin Pharmacol. 1999;55:411–5.

    Article  PubMed  CAS  Google Scholar 

  124. Salih SB, Yousuf M, Durihim H, Almodaimegh H, Tamim H. Prevalence and associated factors of polypharmacy among adult Saudi medical outpatients at a tertiary care center. J Fam Community Med. 2013;20:162.

    Article  Google Scholar 

  125. Veehof L, Stewart R, Haaijer-Ruskamp F, Jong BM-D. The development of polypharmacy. A longitudinal study. Fam Pract. 2000;17:261–7.

    Article  PubMed  CAS  Google Scholar 

  126. Kuller LH, Tracy R, Belloso W, Wit SD, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5:e203.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lichtenstein KA, Armon C, Buchacz K, Chmiel JS, Buckner K, Tedaldi E, et al. Low CD4+ T cell count is a risk factor for cardiovascular disease events in the HIV outpatient study. Clin Infect Dis. 2010;51:435–47.

    Article  PubMed  CAS  Google Scholar 

  128. Mocroft A, Phillips AN, Gatell J, Ledergerber B, Fisher M, Clumeck N, et al. Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: An observational cohort study. The Lancet. 2007;370:407–13.

    Article  CAS  Google Scholar 

  129. Madden E, Lee G, Kotler DP, Wanke C, Lewis CE, Tracy R, et al. Association of antiretroviral therapy with fibrinogen levels in HIV infection. AIDS (London, England). 2008;22:707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PloS One. 2010;5:e8886.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, Mican J, et al. ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog. 2007;3:e46.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Buzón J, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010;16:460–5.

    Article  PubMed  Google Scholar 

  133. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science. 1998;280:427–31.

    Article  PubMed  CAS  Google Scholar 

  134. Li Q, Estes JD, Duan L, Jessurun J, Pambuccian S, Forster C, et al. Simian immunodeficiency virus—induced intestinal cell apoptosis is the underlying mechanism of the regenerative enteropathy of early infection. J Infect Dis. 2008;197:420–9.

    Article  PubMed  Google Scholar 

  135. Cassol E, Malfeld S, Mahasha P, Van Der Merwe S, Cassol S, Seebregts C, et al. Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis. 2010;202:723–33.

    Article  PubMed  CAS  Google Scholar 

  136. De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80:219–27.

    Article  PubMed  Google Scholar 

  137. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflammaging: An evolutionary perspective on immunosenescence. Ann N. Y. Acad Sci. 2000;908:244–54.

    Article  PubMed  CAS  Google Scholar 

  138. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105.

    Article  PubMed  CAS  Google Scholar 

  139. Bruunsgaard H, Andersen-Ranberg K, Hjelmborg J, Pedersen BK, Jeune B. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am J Med. 2003;115:278–83.

    Article  PubMed  CAS  Google Scholar 

  140. O'mahony L, Holland J, Jackson J, Feighery C, Hennessy T, Mealy K. Quantitative intracellular cytokine measurement: Age-related changes in proinflammatory cytokine production. Clin Exp Immunol. 1998;113:213–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med. 2000;51:245.

    Article  PubMed  CAS  Google Scholar 

  142. Encarnacion M-R, Beata B-M, Kenneth D. Cause, consequences, and reversal of immune system aging. J Clin Investig. 2013;123:958–65.

    Article  Google Scholar 

  143. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36:288–97.

    Article  Google Scholar 

  144. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint J-P, Labalette M. Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech Ageing Dev. 2006;127:274–81.

    Article  PubMed  CAS  Google Scholar 

  145. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, et al. Age related human T cell subset evolution and senescence. Immunity & Ageing. 2019;16:1–7.

    Article  Google Scholar 

  146. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: Distinct regulatory pathways during activation and replicative senescence. J Immunol. 1999;162:6572–9.

    Article  PubMed  CAS  Google Scholar 

  147. Liuzzo G, JrJ G, Yang H, Kopecky SL, Holmes DR, Frye RL, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101:2883–8.

    Article  PubMed  CAS  Google Scholar 

  148. Giubilato S, Liuzzo G, Brugaletta S, Pitocco D, Graziani F, Smaldone C, et al. Expansion of CD4+ CD28null T-lymphocytes in diabetic patients: Exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur Heart J. 2011;32:1214–26.

    Article  PubMed  CAS  Google Scholar 

  149. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, et al. Unusual CD4+ CD28nullT lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol. 2007;50:1450–8.

    Article  PubMed  CAS  Google Scholar 

  150. Liuzzo G, Kopecky SL, Frye RL, Fallon WMO, Maseri A, Goronzy JJ, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100:2135–9.

    Article  PubMed  CAS  Google Scholar 

  151. Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, et al. Terminally differentiated CD4+ T cells promote myocardial inflammaging. Front Immunol. 2021;12:584538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Tae YH, Youn J-C, Lee J, Park S, Chi H-S, Lee J, et al. Characterization of CD8+ CD57+ T cells in patients with acute myocardial infarction. Cell Mol Immunol. 2015;12:466–73.

    Article  Google Scholar 

  153. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203:452–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Blann A. Endothelial cell activation, injury, damage and dysfunction: Separate entities or mutual terms? Blood Coagul Fibrinolysis. 2000;11:623–30.

    Article  PubMed  CAS  Google Scholar 

  155. Glasser SP, Selwyn AP, Ganz P. Atherosclerosis: Risk factors and the vascular endothelium. Am Heart J. 1996;131:379–84.

    Article  PubMed  CAS  Google Scholar 

  156. Ren Z, Yao Q, Chen C. HIV-1 envelope glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells. Lab Invest. 2002;82:245–55.

    Article  PubMed  CAS  Google Scholar 

  157. Gross P, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26:463–78.

    Article  PubMed  CAS  Google Scholar 

  158. Bussolino F, Mitola S, Serini G, Barillari G, Ensoli B. Interactions between endothelial cells and HIV-1. Int J Biochem Cell Biol. 2001;33:371–90.

    Article  PubMed  CAS  Google Scholar 

  159. de Gaetano DK, Rabagliati R, Iacoviello L, Cauda R. HIV infection, HAART, and endothelial adhesion molecules: Current perspectives. Lancet Infect Dis. 2004;4:213–22.

    Article  Google Scholar 

  160. Duprez DA, Cohn JN. Monitoring vascular health beyond blood pressure. Curr Hypertens Rep. 2006;8:287–91.

    Article  PubMed  Google Scholar 

  161. Schillaci G, De Socio GV, Pirro M, Savarese G, Mannarino MR, Baldelli F, et al. Impact of treatment with protease inhibitors on aortic stiffness in adult patients with human immunodeficiency virus infection. Arterioscler Thromb Vasc Biol. 2005;25:2381–5.

    Article  PubMed  CAS  Google Scholar 

  162. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci. 2011;120:357–75.

    Article  CAS  Google Scholar 

  163. Mdodo R, Frazier EL, Dube SR, Mattson CL, Sutton MY, Brooks JT, et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: Cross-sectional surveys. Ann Intern Med. 2015;162:335–44.

    Article  PubMed  Google Scholar 

  164. Petoumenos K, Worm S, Reiss P, De Wit S, d'Arminio Monforte A, Sabin C, et al. Rates of cardiovascular disease following smoking cessation in patients with HIV infection: Results from the D: A: D study. HIV Med. 2011;12:412–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Freiberg MS, McGinnis KA, Kraemer K, Samet JH, Conigliaro J, Ellison RC, et al. The association between alcohol consumption and prevalent cardiovascular diseases among HIV infected and uninfected men. J Acquir Immune Defic Syndr. 1999;2010(53):247.

    Google Scholar 

  166. d’Ettorre G, Ceccarelli G, Pavone P, Vittozzi P, De Girolamo G, Schietroma I, et al. What happens to cardiovascular system behind the undetectable level of HIV viremia? AIDS res ther. 2016;13:1–17.

    Article  Google Scholar 

  167. Jaggers JR, Prasad VK, Dudgeon WD, Blair SN, Sui X, Burgess S, et al. Associations between physical activity and sedentary time on components of metabolic syndrome among adults with HIV. AIDS Care. 2014;26:1387–92.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Blashill AJ, Mayer KH, Crane H, Magidson JF, Grasso C, Mathews WC, et al. Physical activity and health outcomes among HIV-infected men who have sex with men: A longitudinal mediational analysis. Ann Behav Med. 2013;46:149–56.

    Article  PubMed  Google Scholar 

  169. Hall LN, Sanchez LR, Hubbard J, Lee H, Looby SE, Srinivasa S, et al. Aspartame intake relates to coronary plaque burden and inflammatory indices in human immunodeficiency virus. In: Open forum infectious diseases. Oxford University Press; 2017.

    Google Scholar 

  170. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–e143.

    PubMed  Google Scholar 

  171. HIV and nutrition and food safety: HIVinfo@NIH.gov; 2021 [Available from: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/hiv-and-nutrition-and-food-safety.

  172. Guide AC. Putting the pieces together. Citeseer; 2003.

    Google Scholar 

  173. Salomon J, De Truchis P, Melchior J-C. Nutrition and HIV infection. Br J Nutr. 2002;87:S111–S9.

    Article  PubMed  CAS  Google Scholar 

  174. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  PubMed  CAS  Google Scholar 

  175. Mosepele M, Molefe-Baikai OJ, Grinspoon SK, Triant VA. Benefits and risks of statin therapy in the HIV-infected population. Curr Infect Dis Rep. 2018;20:1–8.

    Article  Google Scholar 

  176. Myerson M, Malvestutto C, Aberg JA. Management of lipid disorders in patients living with HIV. J Clin Pharmacol. 2015;55:957–74.

    Article  PubMed  Google Scholar 

  177. Feinstein MJ, Achenbach CJ, Stone NJ, Lloyd-Jones DM. A systematic review of the usefulness of statin therapy in HIV-infected patients. Am J Cardiol. 2015;115:1760–6.

    Article  PubMed  CAS  Google Scholar 

  178. Hsyu P-H, Schultz-Smith MD, Lillibridge JH, Lewis RH, Kerr BM. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother. 2001;45:3445–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Silverberg MJ, Leyden W, Hurley L, Go AS, Quesenberry CP Jr, Klein D, et al. Response to newly prescribed lipid-lowering therapy in patients with and without HIV infection. Ann Intern Med. 2009;150:301–13.

    Article  PubMed  Google Scholar 

  180. Singh S, Willig JH, Mugavero MJ, Crane PK, Harrington RD, Knopp RH, et al. Comparative effectiveness and toxicity of statins among HIV-infected patients. Clin Infect Dis. 2011;52:387–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Council A. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. J Org Chem. 2021;86(1):693–708.

  182. EACS Guidelines. European AIDS Clinical Society; 2021.

    Google Scholar 

  183. Balt CA. Hypertension and HIV infection. J Assoc Nurses AIDS Care. 2013;24:S127–S34.

    Article  PubMed  Google Scholar 

  184. Smith PD, Quinn TC, Strober W, Janoff EN, Masur H. Gastrointestinal infections in AIDS. Ann Intern Med. 1992;116:63–77.

    Article  PubMed  CAS  Google Scholar 

  185. Organization WH. Nutrient requirements for people living with HIV/AIDS. 2003.

    Google Scholar 

  186. Alison T. Guide to screening for food and nutrition services among adolescents and adults living with HIV. Food and Nutrition technical Assistance project (FANTA).; 2010.

    Google Scholar 

  187. Somarriba G, Neri D, Schaefer N, Miller TL. The effect of aging, nutrition, and exercise during HIV infection. HIV/AIDS (Auckland, NZ). 2010;2:191.

    CAS  Google Scholar 

  188. Narayanam H, Chinni SV, Samuggam S. The impact of micronutrients-calcium, vitamin d, selenium, zinc in cardiovascular health: a mini review. Front Physiol. 2021;12:742425.

  189. Honarbakhsh S, Schachter M. Vitamins and cardiovascular disease. Br J Nutr. 2008;101:1113–31.

    Article  PubMed  Google Scholar 

  190. Debreceni B, Debreceni L. Role of vitamins in cardiovascular health and disease. Res Reports in Clinic Cardiol. 2014;5:283–95.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge, Department of Pharmaceuticals, Ministry of chemicals and fertilizers, Govt of India.

Author information

Authors and Affiliations

Authors

Contributions

V Udaya Kumar, Krishna Murti, Sameer Dhingra, Krishna Pandey conceptualized the topics. Muhammed Shabil wrote the first draft of manuscript and drafted the pictorial and tabular representations. V Udaya Kumar, Vipan Kumar Parihar, and Nitesh Kumar contributed in critical review, editing, and finalizing the manuscript. V Ravichandiran and Krishna Pandey revised the manuscript and responsible for the final content. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Krishna Murti.

Ethics declarations

Ethical Approval

Since this is a narrative review, it does not require any ethical clearance.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabil, M., Kumar, V.U., Dhingra, S. et al. Current Scenario and Strategies to Tackle Cardiovascular Disease Risk in HIV Geriatrics. Curr. Pharmacol. Rep. 9, 523–539 (2023). https://doi.org/10.1007/s40495-023-00332-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00332-0

Keywords

Navigation