Skip to main content
Log in

Frailty and Aging in HIV— Status Post 13 Years of National Awareness

  • Review
  • Clinics and Public Health
  • Published:
The Journal of Frailty & Aging Aims and scope Submit manuscript

Abstract

The People aged 50 years and above comprise over 50% of people living with HIV (PLWH) in the US. Despite the advances made with antiretroviral therapy in increasing their life span, PLWH are plagued with non-AIDS associated conditions which increase their risk for morbidity and mortality. Frailty, a decline in physical and functional reserve, is one of the manifestations of aging, has a prevalence of 5–30%, and occurs up to 2 decades earlier in people aging with HIV (PAWH). The majority of providers for PAWH have minimal experience with the concept of gerontology, frailty, and aging. Hence, there is a gap in clinicians’ knowledge on how to address frailty and aging in PAWH. This review will focus on the clinical interventions that mitigate frailty and aging in PAWH as well as highlight areas of investigation towards achieving these mediations. Beyond the identification of the roles of exercise and nutrition, more studies are needed on the pragmatic approach to apply these resources to routine care. There should be continued reinforcement of the proven strategy of combination antiretroviral therapy as well as treatment of co-infections and age-appropriate health and cancer screening in PAWH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. CDC. HIV and Older Americans. 2020.

  2. Montano M, Bhasin S, D’Aquila RT, et al. Harvard HIV and Aging Workshop: Perspectives and Priorities from Claude D. Pepper Centers and Centers for AIDS Research. AIDS Res Hum Retroviruses 2019; 35(11–12): 999–1012.

    Article  Google Scholar 

  3. Lerner AM, Eisinger RW, Fauci AS. Comorbidities in Persons With HIV: The Lingering Challenge. Jama 2020; 323(1): 19–20.

    Article  Google Scholar 

  4. Retornaz F, Petit N, Darque A, et al. [Frailty phenotype in older people living with HIV: concepts, prevention and issues]. Geriatr Psychol Neuropsychiatr Vieil 2019; 17(2): 123–8.

    Google Scholar 

  5. Gustafson DR, Shi Q, Thurn M, et al. Frailty and Constellations of Factors in Aging HIV-infected and Uninfected Women—The Women’s Interagency HIV Study. J Frailty Aging 2016; 5(1): 43–8.

    CAS  Google Scholar 

  6. Sokoya T, Steel HC, Nieuwoudt M, Rossouw TM. HIV as a Cause of Immune Activation and Immunosenescence. Mediators Inflamm 2017; 2017: 6825493.

    Article  CAS  Google Scholar 

  7. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146–56.

    Article  CAS  Google Scholar 

  8. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Scientific World Journal 2001; 1: 323–36.

    Article  CAS  Google Scholar 

  9. Kojima G, Liljas AEM, Iliffe S. Frailty syndrome: implications and challenges for health care policy. Risk Manag Healthc Policy 2019; 12: 23–30.

    Article  Google Scholar 

  10. Guaraldi G, Brothers TD, Zona S, et al. A frailty index predicts survival and incident multimorbidity independent of markers of HIV disease severity. Aids 2015; 29(13): 1633–41.

    Article  Google Scholar 

  11. Walston J, Buta B, Xue QL. Frailty Screening and Interventions: Considerations for Clinical Practice. Clin Geriatr Med 2018; 34(1): 25–38.

    Article  Google Scholar 

  12. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet 2013; 381(9868): 752–62.

    Article  Google Scholar 

  13. Lene Ryom GB, et al. EACS guidelines. Europenen AIDS Clinical Society Vol. 11, 2021.

  14. Rockwood K, Theou O. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can Geriatr J 2020; 23(3): 210–5.

    Article  Google Scholar 

  15. National Institute of Aging. Short Physical Performance Battery. https://www.nia.nih.gov/research/labs/leps/short-physical-performance-battery-sppb

  16. Desquilbet L, Margolick JB, Fried LP, et al. Relationship between a frailty-related phenotype and progressive deterioration of the immune system in HIV-infected men. J Acquir Immune Defic Syndr 2009; 50(3): 299–306.

    Article  Google Scholar 

  17. Onen NF, Agbebi A, Shacham E, Stamm KE, Onen AR, Overton ET. Frailty among HIV-infected persons in an urban outpatient care setting. J Infect 2009; 59(5): 346–52.

    Article  Google Scholar 

  18. Önen NF, Patel P, Baker J, et al. Frailty and Pre-Frailty in a Contemporary Cohort of HIV-Infected Adults. J Frailty Aging 2014; 3(3): 158–65.

    Google Scholar 

  19. Piggott DA, Muzaale AD, Mehta SH, et al. Frailty, HIV infection, and mortality in an aging cohort of injection drug users. PLoS One 2013; 8(1): e54910.

    Article  CAS  Google Scholar 

  20. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc 2012; 60(8): 1487–92.

    Article  Google Scholar 

  21. Bernaud C, Sécher S, Michau C, et al. HIV-infected patients aged above 75years. Med Mal Infect 2020; 50(1): 43–8.

    Article  CAS  Google Scholar 

  22. Zhang Q, Guo H, Gu H, Zhao X. Gender-associated factors for frailty and their impact on hospitalization and mortality among community-dwelling older adults: a cross-sectional population-based study. PeerJ 2018; 6: e4326.

    Article  Google Scholar 

  23. Hocqueloux L, Prazuck T, Avettand-Fenoel V, et al. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. Aids 2010; 24(10): 1598–601.

    Article  Google Scholar 

  24. Sáez-Cirión A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 2013; 9(3): e1003211.

    Article  Google Scholar 

  25. Henrich TJ, Gandhi RT. Early treatment and HIV-1 reservoirs: a stitch in time? J Infect Dis 2013; 208(8): 1189–93.

    Article  Google Scholar 

  26. Kök A, Hocqueloux L, Hocini H, et al. Early initiation of combined antiretroviral therapy preserves immune function in the gut of HIV-infected patients. Mucosal Immunol 2015; 8(1): 127–40.

    Article  Google Scholar 

  27. Kim CJ, Rousseau R, Huibner S, et al. Impact of intensified antiretroviral therapy during early HIV infection on gut immunology and inflammatory blood biomarkers. Aids 2017; 31(11): 1529–34.

    Article  Google Scholar 

  28. Adolescents. PoAGfAa. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents living with HIV. Department of Health and Human Services, 2019.

  29. Lundgren JD, Babiker AG, Gordin F, et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N Engl J Med 2015; 373(9): 795–807.

    Article  CAS  Google Scholar 

  30. Danel C, Moh R, Gabillard D, et al. A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa. N Engl J Med 2015; 373(9): 808–22.

    Article  CAS  Google Scholar 

  31. Gandhi RT, Coombs RW, Chan ES, et al. No effect of raltegravir intensification on viral replication markers in the blood of HIV-1-infected patients receiving antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 59(3): 229–35.

    Article  CAS  Google Scholar 

  32. Hatano H, Strain MC, Scherzer R, et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J Infect Dis 2013; 208(9): 1436–42.

    Article  CAS  Google Scholar 

  33. Wilkin TJ, Lalama CM, McKinnon J, et al. A pilot trial of adding maraviroc to suppressive antiretroviral therapy for suboptimal CD4+ T-cell recovery despite sustained virologic suppression: ACTG A5256. J Infect Dis 2012; 206(4): 534–42.

    Article  CAS  Google Scholar 

  34. Gutiérrez C, Díaz L, Vallejo A, et al. Intensification of antiretroviral therapy with a CCR5 antagonist in patients with chronic HIV-1 infection: effect on T cells latently infected. PLoS One 2011; 6(12): e27864.

    Article  Google Scholar 

  35. Staples CT, Jr., Rimland D, Dudas D. Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): the effect of coinfection on survival. Clin Infect Dis 1999; 29(1): 150–4.

    Article  Google Scholar 

  36. Graham CS, Baden LR, Yu E, et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis 2001; 33(4): 562–9.

    Article  CAS  Google Scholar 

  37. Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. Aids 2008; 22(15): 1979–91.

    Article  Google Scholar 

  38. Grady BP, Nanlohy NM, van Baarle D. HCV monoinfection and HIV/HCV coinfection enhance T-cell immune senescence in injecting drug users early during infection. Immun Ageing 2016; 13: 10.

    Article  Google Scholar 

  39. Singh KP, Crane M, Audsley J, Avihingsanon A, Sasadeusz J, Lewin SR. HIV-hepatitis B virus coinfection: epidemiology, pathogenesis, and treatment. Aids 2017; 31(15): 2035–52.

    Article  Google Scholar 

  40. Kooij KW, Wit FW, Schouten J, et al. HIV infection is independently associated with frailty in middle-aged HIV type 1-infected individuals compared with similar but uninfected controls. Aids 2016; 30(2): 241–50.

    Article  CAS  Google Scholar 

  41. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68(2): 723–50.

    Article  Google Scholar 

  42. Chao C, Xu L, Abrams DI, et al. HMG-CoA reductase inhibitors (statins) use and risk of non-Hodgkin lymphoma in HIV-positive persons. Aids 2011; 25(14): 1771–7.

    Article  CAS  Google Scholar 

  43. Ganesan A, Crum-Cianflone N, Higgins J, et al. High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a double-blind randomized placebo controlled clinical trial. J Infect Dis 2011; 203(6): 756–64.

    Article  CAS  Google Scholar 

  44. Grinspoon SK, Fitch KV, Overton ET, et al. Rationale and design of the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Am Heart J 2019; 212: 23–35.

    Article  Google Scholar 

  45. d’Ettorre G, Ceccarelli G, Giustini N, et al. Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the «Probio-HIV» Clinical Trial. PLoS One 2015; 10(9): e0137200.

    Article  Google Scholar 

  46. Schunter M, Chu H, Hayes TL, et al. Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection. BMC Complement Altern Med 2012; 12: 84.

    Article  Google Scholar 

  47. Levy Y, Lacabaratz C, Weiss L, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 2009; 119(4): 997–1007.

    CAS  Google Scholar 

  48. Sereti I, Dunham RM, Spritzler J, et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood 2009; 113(25): 6304–14.

    Article  CAS  Google Scholar 

  49. Vandergeeten C, Fromentin R, DaFonseca S, et al. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 2013; 121(21): 4321–9.

    Article  CAS  Google Scholar 

  50. Goonetilleke N, Clutton G, Swanstrom R, Joseph SB. Blocking Formation of the Stable HIV Reservoir: A New Perspective for HIV-1 Cure. Front Immunol 2019; 10: 1966.

    Article  CAS  Google Scholar 

  51. Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22(1): 78–83.

    Article  CAS  Google Scholar 

  52. Organization WH. Multimorbidity:Technical Series on Safer Primary Care. 2016.

  53. Wong C, Gange SJ, Moore RD, et al. Multimorbidity Among Persons Living with Human Immunodeficiency Virus in the United States. Clin Infect Dis 2018; 66(8): 1230–8.

    Article  Google Scholar 

  54. Tomita A, Leyna GH, Kim HY, et al. Patterns of multimorbidity and their association with hospitalisation: a population-based study of older adults in urban Tanzania. Age Ageing 2021; 50(4): 1349–60.

    Article  Google Scholar 

  55. Arant EC, Harding C, Geba M, Targonski PV, McManus KA. Human Immunodeficiency Virus (HIV) and Aging: Multimorbidity in Older People With HIV in One Nonurban Southeastern Ryan White HIV/AIDS Program Clinic. Open Forum Infect Dis 2021; 8(1): ofaa584.

    Article  Google Scholar 

  56. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140(11): e596–e646.

    Google Scholar 

  57. Lucas GM, Ross MJ, Stock PG, et al. Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2014; 59(9): e96–138.

    Article  CAS  Google Scholar 

  58. Gnjidic D, Hilmer SN, Blyth FM, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol 2012; 65(9): 989–95.

    Article  Google Scholar 

  59. Edelman EJ, Gordon KS, Glover J, McNicholl IR, Fiellin DA, Justice AC. The next therapeutic challenge in HIV: polypharmacy. Drugs Aging 2013; 30(8): 613–28.

    Article  Google Scholar 

  60. Moore HN, Mao L, Oramasionwu CU. Factors associated with polypharmacy and the prescription of multiple medications among persons living with HIV (PLWH) compared to non-PLWH. AIDS Care 2015; 27(12): 1443–8.

    Article  Google Scholar 

  61. Justice AC, Gordon KS, Skanderson M, et al. Nonantiretroviral polypharmacy and adverse health outcomes among HIV-infected and uninfected individuals. Aids 2018; 32(6): 739–49.

    Article  Google Scholar 

  62. Wimmer BC, Cross AJ, Jokanovic N, et al. Clinical Outcomes Associated with Medication Regimen Complexity in Older People: A Systematic Review. J Am Geriatr Soc 2017; 65(4): 747–53.

    Article  Google Scholar 

  63. Rankin A, Cadogan CA, Patterson SM, et al. Interventions to improve the appropriate use of polypharmacy for older people. Cochrane Database Syst Rev 2018; 9(9): Cd008165.

    Google Scholar 

  64. Scott JS, Brandon. Drug-Drug Interactions and Polypharmacy in HIV and Aging. February 3, 2020 ed: The American Academy of HIV Medicine, 2020.

  65. American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc 2015; 63(11): 2227–46.

    Article  Google Scholar 

  66. Gallagher PF, O’Connor MN, O’Mahony D. Prevention of potentially inappropriate prescribing for elderly patients: a randomized controlled trial using STOPP/START criteria. Clin Pharmacol Ther 2011; 89(6): 845–54.

    Article  CAS  Google Scholar 

  67. López JD, Shacham E, Brown T. Suicidal Ideation Persists Among Individuals Engaged in HIV Care in the Era of Antiretroviral Therapy. AIDS Behav 2018; 22(3): 800–5.

    Article  Google Scholar 

  68. Milanini B, Catella S, Perkovich B, et al. Psychiatric symptom burden in older people living with HIV with and without cognitive impairment: the UCSF HIV over 60 cohort study. AIDS Care 2017; 29(9): 1178–85.

    Article  Google Scholar 

  69. Do AN, Rosenberg ES, Sullivan PS, et al. Excess burden of depression among HIV-infected persons receiving medical care in the united states: data from the medical monitoring project and the behavioral risk factor surveillance system. PLoS One 2014; 9(3): e92842.

    Article  Google Scholar 

  70. Brennan-Ing M. Emerging Issues in HIV and Aging. HIV Aging Policy Action Coalition (HAPAC), 2020.

  71. Menza TW, Hixson LK, Lipira L, Drach L. Social Determinants of Health and Care Outcomes Among People With HIV in the United States. Open Forum Infect Dis 2021; 8(7): ofab330.

    Article  Google Scholar 

  72. Young P, Shah J, Zhang C, et al. Frailty in Postmenopausal African American and Hispanic HIV-Infected Women. J Frailty Aging 2016; 5(4): 242–6.

    CAS  Google Scholar 

  73. Piggott DA, Erlandson KM, Yarasheski KE. Frailty in HIV: Epidemiology, Biology, Measurement, Interventions, and Research Needs. Curr HIV/AIDS Rep 2016; 13(6): 340–8.

    Article  Google Scholar 

  74. Pellowski JA, Kalichman SC, Matthews KA, Adler N. A pandemic of the poor: social disadvantage and the U.S. HIV epidemic. Am Psychol 2013; 68(4): 197–209.

    Article  Google Scholar 

  75. Organzation wH. Summary of the global HIV epidemic, 2020. WHO, 2021.

  76. Marcus JL, Leyden WA, Alexeeff SE, et al. Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults With and Without HIV Infection, 2000–2016. JAMA Netw Open 2020; 3(6): e207954.

    Article  Google Scholar 

  77. Hsue PY, Tawakol A. Inflammation and Fibrosis in HIV: Getting to the Heart of the Matter. Circ Cardiovasc Imaging 2016; 9(3): e004427.

    Article  Google Scholar 

  78. Siedner MJ, Bibangambah P, Kim JH, et al. Treated HIV Infection and Progression of Carotid Atherosclerosis in Rural Uganda: A Prospective Observational Cohort Study. J Am Heart Assoc 2021; 10(12): e019994.

    Article  Google Scholar 

  79. Hsue PY, Scherzer R, Hunt PW, et al. Carotid Intima-Media Thickness Progression in HIV-Infected Adults Occurs Preferentially at the Carotid Bifurcation and Is Predicted by Inflammation. J Am Heart Assoc 2012; 1(2).

    Google Scholar 

  80. Louwrens A, Fourie CMT, Roux SB, Breet Y. Age-related differences in the vascular function and structure of South Africans living with HIV. South Afr J HIV Med 2022; 23(1): 1335.

    Article  Google Scholar 

  81. Organization WH. Number of deaths due to HIV/AIDS. 2022.

  82. Ávila-Funes JA, Pina-Escudero SD, Aguilar-Navarro S, Gutierrez-Robledo LM, Ruiz-Arregui L, Amieva H. Cognitive impairment and low physical activity are the components of frailty more strongly associated with disability. J Nutr Health Aging 2011; 15(8): 683–9.

    Article  Google Scholar 

  83. Sun-Suslow N, Paolillo EW, Morgan EE, Letendre S, Iudicello J, Moore DJ. Brief Report: Frailty and HIV Disease Severity Synergistically Increase Risk of HIV-Associated Neurocognitive Disorders. J Acquir Immune Defic Syndr 2020; 84(5): 522–6.

    Article  CAS  Google Scholar 

  84. Brigola AG, Rossetti ES, Dos Santos BR, et al. Relationship between cognition and frailty in elderly: A systematic review. Dement Neuropsychol 2015; 9(2): 110–9.

    Article  Google Scholar 

  85. Harezlak J, Buchthal S, Taylor M, et al. Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. Aids 2011; 25(5): 625–33.

    Article  CAS  Google Scholar 

  86. Leone MJ, Sun H, Boutros CL, et al. HIV Increases Sleep-based Brain Age Despite Antiretroviral Therapy. Sleep 2021.

  87. Heaton RK, Clifford DB, Franklin DR, Jr., et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010; 75(23): 2087–96.

    Article  CAS  Google Scholar 

  88. Wang Y, Liu M, Lu Q, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. Neurology 2020; 95(19): e2610–e21.

    Article  CAS  Google Scholar 

  89. Bhaskaran K, Mussini C, Antinori A, et al. Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol 2008; 63(2): 213–21.

    Article  Google Scholar 

  90. Dorrell L, Snow MH, Ong EL. Mortality and survival trends in patients with AIDS in north east England from 1984–1992. J Infect 1995; 30(1): 23–7.

    Article  CAS  Google Scholar 

  91. Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011; 17(1): 3–16.

    Article  CAS  Google Scholar 

  92. Cohen RA, Seider TR, Navia B. HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease? Alzheimers Res Ther 2015; 7(1): 37.

    Article  Google Scholar 

  93. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69(18): 1789–99.

    Article  CAS  Google Scholar 

  94. Mukherjee T, Sakthivel R, Fong HY, et al. Utility of Using the Montreal Cognitive Assessment (MoCA) as a Screening Tool for HIV-Associated Neurocognitive Disorders (HAND) In Multi-Ethnic Malaysia. AIDS Behav 2018; 22(10): 3226–33.

    Article  Google Scholar 

  95. Fazeli PL, Casaletto KB, Paolillo E, Moore RC, Moore DJ, The Hnrp G. Screening for neurocognitive impairment in HIV-positive adults aged 50 years and older: Montreal Cognitive Assessment relates to self-reported and clinician-rated everyday functioning. J Clin Exp Neuropsychol 2017; 39(9): 842–53.

    Article  CAS  Google Scholar 

  96. Pope CN, Fazeli PL, Vance DE, Mrug S, Ball KK, Stavrinos D. Cognitive reserve attenuates the association between HIV serostatus and cognitive performance in adults living in the deep South. Appl Neuropsychol Adult 2020: 1–10.

  97. Ellison, JM. Healthy Aging: Cognitive Reserve and How to Strengthen It. Available at: https://www.brightfocus.org/alzheimers-disease/article/healthy-aging-cognitive-reserve-and-how-strengthen-it. Accessed May 16.

  98. Ezeamama AE, Sikorskii A, Sankar PR, et al. Computerized Cognitive Rehabilitation Training for Ugandan Seniors Living with HIV: A Validation Study. J Clin Med 2020; 9(7).

    Google Scholar 

  99. Chang L, Løhaugen GC, Andres T, et al. Adaptive working memory training improved brain function in human immunodeficiency virus-seropositive patients. Ann Neurol 2017; 81(1): 17–34.

    Article  CAS  Google Scholar 

  100. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Cmaj 2006; 174(6): 801–9.

    Article  Google Scholar 

  101. Anderson L, Thompson DR, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2016; 2016(1): Cd001800.

    Google Scholar 

  102. Myers J, Kaykha A, George S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med 2004; 117(12): 912–8.

    Article  Google Scholar 

  103. Oursler KK, Sorkin JD, Ryan AS, Katzel LI. A pilot randomized aerobic exercise trial in older HIV-infected men: Insights into strategies for successful aging with HIV. PLoS One 2018; 13(6): e0198855.

    Article  Google Scholar 

  104. Briggs BC, Ryan AS, Sorkin JD, Oursler KK. Feasibility and effects of high-intensity interval training in older adults living with HIV. J Sports Sci 2021; 39(3): 304–11.

    Article  Google Scholar 

  105. O’Brien K, Nixon S, Glazier RH, Tynan AM. Progressive resistive exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev 2004; (4): Cd004248.

  106. Nixon S, O’Brien K, Glazier RH, Tynan AM. Aerobic exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev 2005; (2): Cd001796.

  107. Theou O, Stathokostas L, Roland KP, et al. The effectiveness of exercise interventions for the management of frailty: a systematic review. J Aging Res 2011; 2011: 569194.

    Article  Google Scholar 

  108. Jadczak AD, Makwana N, Luscombe-Marsh N, Visvanathan R, Schultz TJ. Effectiveness of exercise interventions on physical function in community-dwelling frail older people: an umbrella review of systematic reviews. JBI Database System Rev Implement Rep 2018; 16(3): 752–75.

    Article  Google Scholar 

  109. Apóstolo J, Cooke R, Bobrowicz-Campos E, et al. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: a systematic review. JBI Database System Rev Implement Rep 2018; 16(1): 140–232.

    Article  Google Scholar 

  110. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord 2017; 16: 21.

    Article  Google Scholar 

  111. Nascimento CM, Ingles M, Salvador-Pascual A, Cominetti MR, Gomez-Cabrera MC, Viña J. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med 2019; 132: 42–9.

    Article  CAS  Google Scholar 

  112. Pinto Neto LF, Sales MC, Scaramussa ES, da Paz CJ, Morelato RL. Human immunodeficiency virus infection and its association with sarcopenia. Braz J Infect Dis 2016; 20(1): 99–102.

    Article  Google Scholar 

  113. Echeverría P, Bonjoch A, Puig J, et al. High Prevalence of Sarcopenia in HIV-Infected Individuals. Biomed Res Int 2018; 2018: 5074923.

    Article  Google Scholar 

  114. Cawthon PM, Travison TG, Manini TM, et al. Establishing the Link Between Lean Mass and Grip Strength Cut Points With Mobility Disability and Other Health Outcomes: Proceedings of the Sarcopenia Definition and Outcomes Consortium Conference. J Gerontol A Biol Sci Med Sci 2020; 75(7): 1317–23.

    Article  Google Scholar 

  115. Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 2012; 60(1): 16–23.

    Article  Google Scholar 

  116. Vukovich MD, Stubbs NB, Bohlken RM. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr 2001; 131(7): 2049–52.

    Article  CAS  Google Scholar 

  117. Smit E, Wanke C, Dong K, et al. FRAILTY, FOOD INSECURITY, AND NUTRITIONAL STATUS IN PEOPLE LIVING WITH HIV. J Frailty Aging 2015; 4(4): 191–7.

    CAS  Google Scholar 

  118. Oduro JK, Kissah-Korsah K. Aged Persons Living with HIV and Nutritional Wellness: Analysis of 2013 South Africa-SAGE Well-Being of Older People Study (WOPS) Wave 2. J Aging Res 2021; 2021: 6635814.

    Article  Google Scholar 

  119. Bekele T, Globerman J, Watson J, et al. Prevalence and predictors of food insecurity among people living with HIV affiliated with AIDS service organizations in Ontario, Canada. AIDS Care 2018; 30(5): 663–71.

    Article  Google Scholar 

  120. Bigman G, Ryan AS. Healthy Eating Index-2015 Is Associated with Grip Strength among the US Adult Population. Nutrients 2021; 13(10).

    Google Scholar 

  121. Kim J, Lee Y, Kye S, Chung YS, Kim KM. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2015; 44(1): 96–102.

    Article  Google Scholar 

  122. Starup-Linde J, Rosendahl SB, Storgaard M, Langdahl B. Management of Osteoporosis in Patients Living With HIV-A Systematic Review and Meta-analysis. J Acquir Immune Defic Syndr 2020; 83(1): 1–8.

    Article  Google Scholar 

  123. Premaor MO, Compston JE. People living with HIV and fracture risk. Osteoporos Int 2020; 31(9): 1633–44.

    Article  CAS  Google Scholar 

  124. McComsey GA, Tebas P, Shane E, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 2010; 51(8): 937–46.

    Article  Google Scholar 

  125. Oursler KK, Iranmanesh A, Jain C, et al. Short Communication: Low Muscle Mass Is Associated with Osteoporosis in Older Adults Living with HIV. AIDS Res Hum Retroviruses 2020; 36(4): 300–2.

    Article  CAS  Google Scholar 

  126. Siminoski K, Jiang G, Adachi JD, et al. Accuracy of height loss during prospective monitoring for detection of incident vertebral fractures. Osteoporos Int 2005; 16(4): 403–10.

    Article  CAS  Google Scholar 

  127. Xu W, Perera S, Medich D, et al. Height loss, vertebral fractures, and the misclassification of osteoporosis. Bone 2011; 48(2): 307–11.

    Article  Google Scholar 

  128. Brown TT, Hoy J, Borderi M, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis 2015; 60(8): 1242–51.

    Article  Google Scholar 

  129. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int 2014; 25(10): 2359–81.

    Article  CAS  Google Scholar 

  130. Grant PM, Li X, Jacobson LP, et al. Effect of Testosterone Use on Bone Mineral Density in HIV-Infected Men. AIDS Res Hum Retroviruses 2019; 35(1): 75–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzoamaka A. Eke.

Additional information

Conflict of Interest Statement

Uzoamaka A Eke, Kareshma Mohanty, Ann L Gruber-Baldini and Alice S Ryan have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eke, U.A., Mohanty, K., Gruber-Baldini, A.L. et al. Frailty and Aging in HIV— Status Post 13 Years of National Awareness. J Frailty Aging 12, 49–58 (2023). https://doi.org/10.14283/jfa.2022.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jfa.2022.45

Key words

Navigation