Skip to main content

Advertisement

Log in

Endophytic Mycoflora: Antibacterial Secondary Metabolites and Their Therapeutic Potential

  • Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Nowadays, the need of novel biological active compounds is growing as there is remarkable increase in antibiotic resistance developed in microbes. In the present time, the need of new active novel biological molecules is growing as there is remarkable increase in antibiotic resistance. Therefore, the main purpose of this review articles is to introduce endophytic mycoflora that play important role in production of secondary metabolites of pharmaceutical and agriculture interest that fight against various bacterial infections and diseases.

Recent Findings

According to recent research, endophyte produces antibacterial compounds in the host via an alternative biochemical pathway. Endophytic mycoflora are rich source of metabolites that can be used in the treatment of a variety of bacterial diseases. As a result, the production of novel antibacterial compounds by these microbes can help to reduce the load of compound extraction from plants also helping to reduce plant biodiversity loss.

Summary

The current review summarizes the biodiversity of endophytic mycoflora, as well as their biological characteristics and host specificity. In addition, describe the pathways involved in the synthesis of antibacterial compounds from these fungi, as well as the mode of transmission and the various types of antibacterial secondary metabolites isolated from endophytic mycoflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI. Microbial natural products in drug discovery. Processes. 2020;8(4):470. https://doi.org/10.3390/pr8040470.

    Article  CAS  Google Scholar 

  2. Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66(3):447–59. https://doi.org/10.1128/mmbr.66.3.447-459.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khare E, Mishra J, Arora NK. Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol. 2018;9:2732. https://doi.org/10.3389/fmicb.2018.02732. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  4. Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538. https://doi.org/10.3389/fmicb.2016.01538.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Freeman EM. The seed fungus of Lolium temulentum L. Philosophical Transaction of the Royal Society B (Biological Sciences). 1904;196:1–27. https://doi.org/10.1098/rstb.1904.0001. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  6. Wilson D. Fungal emdophytes: out of sight but should not to be our mind. Oikos. 1993;68:379–84. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  7. Hirsch G, Braun U. Communities of parasitic microfungi. In: Winterhoff W, editor. Handbook of vegetative science, Fungi in vegetation science. Dordrecht: Kluwer Academic Publishers; 1992. p. 225–50. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  8. Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF Jr. Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia. 1999;91:315–25. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  9. Stone K, Bacon EW, White F. An Overview of endophytic microbes: endophytism defined. In: Bacon EW, White F, editors. Microbial endophytes. New York: Marcel Dekker Inc; 2000. p. 3–29.

    Google Scholar 

  10. Petrini O. Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J, editors. Microbiology of phyllosphere. Cambridge: Cambridge University Press; 1986. p. 176–87.

    Google Scholar 

  11. Schardl CL. Epichloe festucae and related mutualistic symbionts of grasses. Fungal Genet Biol. 2001;33:69–82.

    Article  CAS  PubMed  Google Scholar 

  12. Avinash KS, Ashwini HS, Ramesh Babu HN, Krishnamurthy YL. Antimicrobial potential of crude extract of Curvularia lunata, an endophytic fungi isolated from Cymbopogon caesius. J Mycol. 2015;2015:1–4.

    Article  Google Scholar 

  13. Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol. 2011;49:291–315.

    Article  CAS  PubMed  Google Scholar 

  14. Schulz B, Wanke U, Draeger S, Aust HJ. Endophytes from herbaceous plants and shrubs - effectiveness of surface sterilization methods. Mycol Res. 1993;97:1447–50. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  15. Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109:661–86. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  16. Bashyal BP, McLaughlin SP, Gunatilaka AA. Zinagrandinolides A-C, cytotoxic delta-elemanolide-type sesquiterpene lactones from Zinnia grandiflora. J Nat Prod. 2006;69(12):1820–2. https://doi.org/10.1021/np0603626. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  17. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, et al. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008;2(4):404–16. https://doi.org/10.1038/ismej.2007.106. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  18. Saikkonen K, Ion D, Gyllenberg M. The persistence of vertically transmitted fungi in grass metapopulations. Proceedings of the Royal Society of Landon, Series B - Biological Sciences. 2002;269:1397–403.

    Article  Google Scholar 

  19. Stone JK, Polishook JD, White JR. Endophytic fungi. In: Mueller GM, Bills GF, Foster MS, editors. Biodiversity of fungi: inventory and monitoring methods. 1st ed. Burlington: Elsevier Academic Press; 2004. p. 777.

    Google Scholar 

  20. Bischoff JF, White JF Jr. Evolutionary development of the Clavicipitaceae. In: Dighton J, White Jr JF, Oudemans P, editors. 3rd ed. Boca Raton: CRC Press; 2005. p. 505–18.

    Google Scholar 

  21. Davis EC, Franklin JB, Shaw AJ, Vilgalys R. Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot. 2003;90(11):1661–7. https://doi.org/10.3732/ajb.90.11.1661.

    Article  PubMed  Google Scholar 

  22. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol. 2007;42(2):543–55. https://doi.org/10.1016/j.ympev.2006.07.012.

    Article  CAS  PubMed  Google Scholar 

  23. Ji Y, Bi JN, Yan B, Zhu XD. Taxol-producing fungi: a new approach to industrial production of taxol. Sheng Wu Gong Cheng Xue Bao. 2006;22(1):1-6. Chinese. https://doi.org/10.1016/s1872-2075(06)60001-0.

  24. Garyali S, Kumar A, Reddy MS. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol. 2013;23(10):1372–80. https://doi.org/10.4014/jmb.1305.05070.

    Article  CAS  PubMed  Google Scholar 

  25. Jumpponen A. Dark septate endophytes–are they mycorrhizal? Mycorrhiza. 2001;11:207–11.

    Article  Google Scholar 

  26. Jalgaonwala RE, Mohite BV, Mahajan RT. Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res. 2011;1:21–32.

    Google Scholar 

  27. Anyasi RO, Atagana HI. Endophytes: an indicator for improved phytoremediation of industrial waste. Proceedings of the 23rd Waste Conference, Emperors Palace, Johannesburg, South Africa, October 17-21, 2016, Institute of Waste Management of Southern Africa, pp: 140-150.

  28. Winther JL, Friedman WE. Arbuscular mycorrhizal associations in Lycopodiaceae. New Phytol. 2008;177(3):790–801. https://doi.org/10.1111/j.1469-8137.2007.02276.x.

    Article  CAS  PubMed  Google Scholar 

  29. Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463–71. https://doi.org/10.1016/j.tim.2008.07.008.

    Article  CAS  PubMed  Google Scholar 

  30. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res. 2010;165(6):437–49. https://doi.org/10.1016/j.micres.2009.11.009.

  31. Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, et al. An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity and stimulates ginsenoside biosynthesis. Phytochem Lett. 2015;11:132–8. https://doi.org/10.1016/j.phytol.2014.12.007.

  32. Sun H, Xu J, Yang S, Liu G, Dai S. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere. 2004;54(4):569–74. https://doi.org/10.1016/S00456535(03)00722-7. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  33. Anyasi RO, Atagana HI. Endophyte: understanding the microbes and its applications. Pak J Biol Sci. 2019;22(4):154–67. https://doi.org/10.3923/pjbs.2019.154.167. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  34. Lewis DH. Symbiosis and mutualism: crisp concepts and soggy semantics. In: Boucher DH, editor. The Biology of Mutualism. London: Croom Helm Ltd.; 1985. p. 29–39.

    Google Scholar 

  35. Francis R, Read DJ. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot. 1995;73:1301–9.

    Article  Google Scholar 

  36. Graham JH, Eissenstat DM. Field evidence for the carbon cost of citrus mycorrhizas. New Phytol. 1998;140:103–10.

    Article  Google Scholar 

  37. Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology. 2007;88(3):541–9. https://doi.org/10.1890/05-1459.

    Article  PubMed  Google Scholar 

  38. Hyde K, Soytong K. Understanding microfungal diversity-a critique. Cryptogam Mycol. 2007;28:1–9.

    Google Scholar 

  39. Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD. Ribosomal DNA fingerprinting in the identification of nonsporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers. 2005;20:167–86.

    Google Scholar 

  40. Davey ML, Currah RS. Interactions between mosses (Bryophyta) and fungi. Can J Bot. 2006;84:1509–19.

    Article  Google Scholar 

  41. Guo LD, Huang GR, Wang Y. Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains Beijing. J Integr Plant Biol. 2008;50(8):997–1003. https://doi.org/10.1111/j.1744-7909.2008.00394.x.

    Article  PubMed  Google Scholar 

  42. Muller CB, Krauss J. Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol. 2005;8:450–6. https://doi.org/10.1016/j.pbi.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  43. Su YY, Guo LD, Hyde KD. Response of endophytic fungi of Stipa grandis to experimental plant function group removal in inner Mongolia steppe China. Fungal Divers. 2010;43:93–101. https://doi.org/10.1007/s13225-010-0040-6.

    Article  Google Scholar 

  44. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brundrett MC. Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schilz BJE, Boyle CJC, Sieber TN, editors. Microbial root endophytes. Berlin: Springer-Verlag; 2006. p. 281–93.

    Chapter  Google Scholar 

  46. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol. 2007;174(3):648–57. https://doi.org/10.1111/j.1469-8137.2007.02008.x.

    Article  PubMed  Google Scholar 

  47. Faeth SH, Gardner DR, Hayes CJ, Jani A, Writtlinger SK, Jones TA. Neotyphodium. J Chem Ecol. 2006;32:307–24.

    Article  CAS  PubMed  Google Scholar 

  48. Davis EC, Shaw AJ. Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot. 2008;95(8):914–24. https://doi.org/10.3732/ajb.2006463.

    Article  PubMed  Google Scholar 

  49. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA. Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochem. 2007;68(3):355–60. https://doi.org/10.1016/j.phytochem.2006.10.012.

    Article  CAS  Google Scholar 

  50. Liu Y, Zuo S, Zou Y, Wang J, Song W. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol. 2013;63(1):71–9. https://doi.org/10.1007/s13213-012-0446-3.

    Article  Google Scholar 

  51. Malfanova N, Lugtenberg BJJ, Berg G. Bacterial endophytes: who and where, and what are they doing there. In: de Bruijn FJ, editor. Molecular microbial ecology of the rhizosphere. Hoboken: Wiley- Blackwell; 2013. p. 391–403.

    Chapter  Google Scholar 

  52. Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50. https://doi.org/10.1111/1758-2229.12181.

    Article  Google Scholar 

  53. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC. Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol. 2014;4(8):1199–208. https://doi.org/10.1002/ece3.953.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clay K. Fungal Endophytes of grasses. Annu Rev Ecol Syst 1990;21:275-297. https://doi.https://doi.org/10.1146/annurev.es.21.110190.001423.

  55. Chung KR, Schardl CL. Sexual cycle and horizontal transmission of the grass symbionts Epichloe typhins. Mycol Res. 1997;101:295–301. https://doi.org/10.1017/S0953756296002602.

    Article  Google Scholar 

  56. Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160(Suppl 4):S99–S127. https://doi.org/10.1086/342161.

    Article  PubMed  Google Scholar 

  57. Selosse MA, Schardl CL. Fungal endophytes of grasses: hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol. 2007;173(3):452–8. https://doi.org/10.1111/j.1469-8137.2007.01978.x.

    Article  PubMed  Google Scholar 

  58. Saikkonen K, Wäli P, Helander M, Faeth SH. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004;9(6):275–80. https://doi.org/10.1016/j.tplants.2004.04.005.

    Article  CAS  PubMed  Google Scholar 

  59. Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci. 2015;6:573. https://doi.org/10.3389/fpls.2015.00573.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448–59. https://doi.org/10.1039/b100918o.

    Article  CAS  PubMed  Google Scholar 

  61. Sauer M, Lu P, Sangari R, Kennedy S, Polishook J, Bills J, et al. Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. Mycol Res. 2002;106(4):460–70. https://doi.org/10.1017/S095375620200566X.

    Article  CAS  Google Scholar 

  62. Rakshith D, Sreedharamurthy S. Endophytic fungi: ‘trapped’ or ‘hidden’ store houses of bioactive compounds within plants; a review. J Pharm Res. 2010;3:2986–9.

    Google Scholar 

  63. Keller NP, Hohn TM. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol. 1997;21(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  64. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP. Genomic mining for Aspergillus natural products. Chem Biol. 2006;13(1):31–7. https://doi.org/10.1016/j.chembiol.2005.10.008.

    Article  CAS  PubMed  Google Scholar 

  65. Winter JM, Behnken S, Hertweck C. Genomics-inspired discovery of natural products. Curr Opin Chem Biol. 2011 Feb;15(1):22–31. https://doi.org/10.1016/j.cbpa.2010.10.020.

    Article  CAS  PubMed  Google Scholar 

  66. Demain AL. Industrial microbiology. Science. 1981;214(4524):987–95. https://doi.org/10.1126/science.6946560.

    Article  CAS  PubMed  Google Scholar 

  67. Demain AL. Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, EJT C, Nicholson N, editors. Biodiversity: new leads for pharmaceutical and agrochemical industries. Cambridge: The Royal Society of Chemistry; 2000. p. 14.

    Google Scholar 

  68. Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo). 2009;62(1):5–16. https://doi.org/10.1038/ja.2008.16.

    Article  CAS  Google Scholar 

  69. Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol. 2007;23:79–83. https://doi.org/10.1007/s11274-006-9195-4.

    Article  CAS  Google Scholar 

  70. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011;15:129–44. https://doi.org/10.1016/j.jscs.2010.06.006.

    Article  CAS  Google Scholar 

  71. Lu C, Shen Y. Harnessing the potential of chemical defenses from antimicrobial activities. Bioessays. 2004;26(7):808–13. https://doi.org/10.1002/bies.20060.

    Article  CAS  PubMed  Google Scholar 

  72. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002 May 9;417(6885):141–7. https://doi.org/10.1038/417141a. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  73. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proceeding of National Academic Sciencee, USA. 2001;98:12215–1220. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  74. Künzler M. How fungi defend themselves against microbial competitors and animal predators. PLoS Pathog. 2018;14(9):e1007184. https://doi.org/10.1371/journal.ppat.1007184. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  75. Oide S, Turgeon BG. Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience. 2020;61(3):101–10. https://doi.org/10.1016/j.myc.2020.03.001.

    Article  Google Scholar 

  76. Berg TL, Froholm LO, Laland SG. The biosynthesis of gramicidin s in a cell-free system. Biochem J. 1965;96(1):43–52. https://doi.org/10.1042/bj0960043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Daniels MJ. Studies of the biosynthesis of polymyxin B. Biochim Biophys Acta. 1968;156(1):119–27. https://doi.org/10.1016/0304-4165(68)90110-4.

    Article  CAS  PubMed  Google Scholar 

  78. Fujikawa K, Suzuki T, Kurahashi K. Incorporation of L-leucine-C14 into tyrocidine by a cell-free preparation of Bacillus brevis Dubos strain. J Biochem. 1966;60(2):216–8. https://doi.org/10.1093/oxfordjournals.jbchem.a128421.

    Article  CAS  PubMed  Google Scholar 

  79. Spaeren U, Froholm LO, Laland SG. Further studies on the biosynthesis of gramicidin S and proteins in a cell-free system from Bacillus brevis. Biochem J. 1967;102(2):586–92. https://doi.org/10.1042/bj1020586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomino S, Yamada M, Itoh H. Kurahashik. Cell-free synthesis of gramicidin S. Biochemistry. 1967;6(8):2552–60. https://doi.org/10.1021/bi00860a037. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  81. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, et al. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem. 2002;277(23):20862–8. https://doi.org/10.1074/jbc.M201654200. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  82. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol. 2005 Dec;3(12):937–47. https://doi.org/10.1038/nrmicro1286.

    Article  CAS  PubMed  Google Scholar 

  83. Sandhu SS, Kumar S, Aharwal RP, Shukla H, Rajak RC. Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci. 2014;3:1179–797. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  84. Sandhu SS, Kumar S, Aharwal RP, Nozawa M. Endophytic fungi: eco-friendly future resource for novel bioactive compounds. In: Maheshwari D, editor. Endophytes: biology and biotechnology. Springer, Chem: Sustainable development and biodiversity; 2017. p. 303–31.

    Chapter  Google Scholar 

  85. Hranueli D, Peric N, Borovicka B, Bogdan S, Cullum J, Waterman PG. Molecular biology of polyketide biosynthesis. Food Technol Biotechnol. 2001;39:203–13.

    CAS  Google Scholar 

  86. Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem. 2002;3(6):490–504. https://doi.org/10.1002/1439-7633(20020603)3:6<490::AID-CBIC490<3.0.CO;2-N.

  87. Grünewald J, Marahiel MA. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev. 2006;70(1):121–46. https://doi.org/10.1128/MMBR.70.1.121-146.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoffmeister D, Keller NP. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep. 2007;24(2):393–416. https://doi.org/10.1039/b603084j.

    Article  CAS  PubMed  Google Scholar 

  89. Kopp F, Marahiel MA. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep. 2007;24(4):735–49. https://doi.org/10.1039/b613652b.

    Article  CAS  PubMed  Google Scholar 

  90. Tanovic A, Samel SA, Essen LO, Marahiel MA. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science. 2008;321:659–63. https://doi.org/10.1126/science.1159850.

    Article  CAS  PubMed  Google Scholar 

  91. Strieker M, Tanović A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20(2):234–40. https://doi.org/10.1016/j.sbi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  92. Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004;58:453–88. https://doi.org/10.1146/annurev.micro.58.030603.123615. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  93. Hertweck C. Hidden biosynthetic treasures brought to light. Nat Chem Biol. 2009;5(7):450–2. https://doi.org/10.1038/nchembio0709-450.

    Article  CAS  PubMed  Google Scholar 

  94. Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106(8):3468–96. https://doi.org/10.1021/cr0503097. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  95. Schwarzer D, Marahiel MA. Multimodular biocatalysts for natural product assembly. Naturwissenschaften. 2001;88(3):93–101. https://doi.org/10.1007/s001140100211.

    Article  CAS  PubMed  Google Scholar 

  96. Rix U, Fischer C, Remsing LL, Rohr J. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep. 2002;19(5):542–80. https://doi.org/10.1039/b103920m.

    Article  CAS  PubMed  Google Scholar 

  97. Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel). 2013;5(4):717–42. https://doi.org/10.3390/toxins5040717.

    Article  CAS  Google Scholar 

  98. Hartwig S, Dovengerds C, Herrmann C, Hovemann BT. Drosophila Ebony: a novel type of nonribosomal peptide synthetase related enzyme with unusually fast peptide bond formation kinetics. FEBS J. 2014;281(22):5147–58. https://doi.org/10.1111/febs.13054.

    Article  CAS  PubMed  Google Scholar 

  99. Strobel GA. Endophytes as sources of bioactive products. Microbes Infect. 2003;5(6):535–44. https://doi.org/10.1016/s1286-4579(03)00073-x.

    Article  CAS  PubMed  Google Scholar 

  100. Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G. Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chemistry. 2013;19(46):15556–64. https://doi.org/10.1002/chem.201302204.

    Article  CAS  PubMed  Google Scholar 

  101. Aly AH, Debbab A, Kjer J, Proksch P. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 2010;41:1–16. https://doi.org/10.1007/s13225-010-0034-4.

    Article  Google Scholar 

  102. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep. 2011;28(7):1208–28. https://doi.org/10.1039/c1np00008j.

    Article  CAS  PubMed  Google Scholar 

  103. Joseph B, Priya RM. Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol. 2011;1:291–309. https://doi.org/10.3923/ajbmb.2011.291.309.

    Article  Google Scholar 

  104. Omojate Godstime C, Enwa Felix O, Jewo Augustina O, Eze CO. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens –a review. J P harm Chem Biol Sci. 2014;2(2):77–85.

    Google Scholar 

  105. Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J Appl Pharm Sci. 2016;6:242–54. https://doi.org/10.7324/JAPS.2016.601034.

    Article  CAS  Google Scholar 

  106. Meca G, Sospedra I, Soriano JM, Ritieni A, Moretti A, Mañes J. Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon. 2010;56(3):349–54. https://doi.org/10.1016/j.toxicon.2010.03.022.

    Article  CAS  PubMed  Google Scholar 

  107. Specian V, Sarragiotto MH, Pamphile JA, Clemente E. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol. 2012;43(3):1174–82. https://doi.org/10.1590/S1517838220120003000045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alvin A, Kristin I, Miller B, Neilan A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res. 2014;169:483–95. https://doi.org/10.1016/j.micres.2013.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dutta D, Puzari KC, Gogoi R, Dutta P. Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol. 2014;57:621–9. https://doi.org/10.1590/S15168913201402043.

    Article  Google Scholar 

  110. Ismail K, Abdullah S, Chong K. Screening for potential antimicrobial compounds from Ganoderma boninense against selected food borne and skin disease pathogens. Int J Pharm Pharm Sci. 2014;6:771–4.

    Google Scholar 

  111. Seto Y, Kogami Y, Shimanuki T, Takahashi K, Matsuura H, Yoshihara T. Production of phleichrome by Cladosporium phlei as stimulated by diketopiperadines of Epichloe typhina. Biosci Biotechnol Biochem. 2005;69:1515–9. https://doi.org/10.1271/bbb.69.1515.

    Article  CAS  PubMed  Google Scholar 

  112. Rani R, Sharma D, Chaturvedi M, Yadav JP. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin Microbiol. 2017;6:280. https://doi.org/10.4172/2327-5073.1000280.

    Article  CAS  Google Scholar 

  113. Chi WC, Pang KL, Chen WL, Wang GJ, Lee TH. Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifolius var. xiamenensis. Bot Stud. 2019;60(1):4. https://doi.org/10.1186/s40529-019-0252-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun P, Huo J, Kurtan T, Mandi A, Antus S, Tang H, et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality. 2013;25:141–8.

    Article  CAS  PubMed  Google Scholar 

  115. Wang WX, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C, et al. Antibacterial Azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod. 2016;79(4):704–10. https://doi.org/10.1021/acs.jnatprod.5b00436.

  116. Shi X, Wang D, Li X, Li H, Meng L, Li X, et al. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 2017;7:51335–42.

    Article  CAS  Google Scholar 

  117. Devi P, Rodrigues C, Naik CG, D’Souza L. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108. Indian J Microbiol. 2012;52(4):617–23. https://doi.org/10.1007/s12088-012-0277-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Goutam J, Kharwar RN, Tiwari VK, Mishra A, Singh S, Koch B. Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India. Front Microbiol. 2017;8:1334. https://doi.org/10.3389/fmicb.2017.01334.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Khan IH, Sohrab H, Rony SR, Tareq FS, Hasan CM, Mazid A. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus. Cladosporium sp Toxicol Rep. 2016;3:861–5. https://doi.org/10.1016/j.toxrep.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  120. Mulyani H, Dewi RT, Chaidir. Antibacterial compound from Aspergillus elegans SweF9 an endophytic fungus from macroalgae Euchema sp. Indonesian J Pharm. 2019;30(3):217–24. https://doi.org/10.14499/indonesianjpharm30iss3pp217.

    Article  CAS  Google Scholar 

  121. Agrawal PK, Bhardwaj A, Sharma D, Jadon N. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Arch Clin Microbiol. 2015;6:1–9.

    Google Scholar 

  122. Nurunnabi TR, Sabrin F, Sharif DI, Nahar L, Sohrab MH, Sarker S, et al. Antimicrobial activity of endophytic fungi isolated from the mangrove plant Sonneratia apetala (Buch.-Ham) from the Sundarbans mangrove forest. Adv Tradit Med (ADTM). 2020;20:419–25. https://doi.org/10.1007/s13596-019-00422-9. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  123. Manganyi MC, Regnier T, CDK T, Bezuidenhout CC, Ateba CN. Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Ann Microbiol. 2019;69:659–63. https://doi.org/10.1007/s13213-019-1444-5.

    Article  CAS  Google Scholar 

  124. Basha NS, Ogbaghebriel A, Yemane K, Zenebe M. Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. Int J Green Pharm. 2012;6:40–4. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  125. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, et al. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoSONE. 2017;12:e0186234. https://doi.org/10.1371/journal.pone.0186234.

    Article  CAS  Google Scholar 

  126. Jouda J, Fopossi JD, Mbazoa CD, Wan J. Antibacterial activity of the major compound of an endophytic fungus isolated from Garcinia preussii. J Appl Pharm Sci. 2016;6:026–9. https://doi.org/10.7324/JAPS.2016.60605.

    Article  Google Scholar 

  127. Momose I, Sekizawa R, Hosokawa N, Iinuma H, Matsui S, Nakamura H, et al. Melleolides K, L and M, new melleolides from Armillariella mellea. J Antibiot (Tokyo). 2000;53(2):137–43. https://doi.org/10.7164/antibiotics.53.137.

    Article  CAS  Google Scholar 

  128. An C, Ma S, Shi X, Xue W, Liu C, Ding H. Diversity and antimicrobial activity of endophytic fungi isolated from Chloranthus japonicus Sieb in Qinling Mountains China. Int J Mol Sci. 2020;21(17):5958. https://doi.org/10.3390/ijms21175958. Provide knowledge about endophytic microbes, its types and mechanism of metabolites synthesis.

  129. Chutulo EC, Chalannavar RK. Antimicrobial activity of Fusarium oxysporum, endophytic fungus, isolated from Psidium guajava L. (White fruit). Int J Pharm Sci Res. 2020;11(11):5844–55. https://doi.org/10.13040/IJPSR. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  130. Erbert C, Lopes AA, Yokoya NS, Furtado NAJC, Conti R, Pupo MT, et al. Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar. 2012;55:435–40. https://doi.org/10.1515/bot-2011-0023.

  131. Santiago C, Fitchett C, Munro MH, Jalil J, Santhanam J. Cytotoxic and antifungal activities of 5-Hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evid Based Complement Alternat Med. 2012;2012:689310–6. https://doi.org/10.1155/2012/689310.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ikram M, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A. Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiol Plant. 2019;41:164. https://doi.org/10.1007/s11738-019-2957-z. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  133. Xu L, Wang J, Zhao J, Li P, Shan T, Wang J, et al. Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Nat Prod Commun. 2010;5(5):811–4.

  134. Tantapakul C, Promgool T, Kanokmedhakul K, Soytong K, Song J, Hadsadee S, et al. Bioactive xanthoquinodins and epipolythiodioxopiperazines from Chaetomium globosum 7s-1, an endophytic fungus isolated from Rhapis cochinchinensis (Lour.). Mart Nat Prod Res. 2020;34(4):494–502. https://doi.org/10.1080/14786419.2018.1489392.

    Article  CAS  PubMed  Google Scholar 

  135. Astuti P, Rollando R, Wahyuono S, Nurrochmad A. Antimicrobial activities of isoprene compounds produced by an endophytic fungus isolated from the leaves of Coleus amboinicus Lour. J Pharm Pharmacogn Res. 2020;8(4):280–9. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  136. •• Chaithra M, Vanitha S, Ramanathan A, Jegadeeshwari V, Rajesh V, Hegde V, et al. Profiling secondary metabolites of cocoa (Theobroma cacao L.) endophytic fungi Lasiodiplodia pseudotheobromae PAK-7 and Lasiodiplodia theobromae TN-R-3 and their antimicrobial activities. Curr J Appl Sci Technol. 2020;39:47–56. https://doi.org/10.9734/cjast/2020/v39i230496. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  137. Hussain H, Tchimene MK, Ahmed I, Meier K, Steinert M, Draeger S, et al. Antimicrobial chemical constituents from the endophytic fungus Phomopsis sp. from Notobasis syriaca. Nat Prod Commun. 2011;6(12):1905–6.

  138. Xie J, Wu Y-Y, Zhang T-Y, Zhang M-Y, Peng F, Lin B, et al. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia. 2018;131:35–43. https://doi.org/10.1016/j.fitote.2018.10.006.

  139. •• Techaoei S, Jirayuthcharoenkul C, Jarmkom K, Dumrongphuttidecha T, Khobjai W. Chemical evaluation and antibacterial activity of novel bioactive compounds from endophytic fungi in Nelumbo nucifera. Saudi J Biol Sci. 2020;27(11):2883–9. https://doi.org/10.1016/j.sjbs.2020.08.037. Provide recent updates about the antibacterial bioactive compounds isolated from endophytic fungi.

  140. Ibrahim SRM, Mohamed GA, Al Haidari RA, Zayed MF, El-Kholy AA, Elkhayat ES, et al. Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorg Med Chem. 2018;26(3):786–90. https://doi.org/10.1016/j.bmc.2017.12.049.

    Article  CAS  PubMed  Google Scholar 

  141. Manganyi MC, Tchatchouang CK, Regnier T, Bezuidenhout CC, Ateba CN. Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology. 2019;47(3):335–9. https://doi.org/10.1080/12298093.2019.1631121.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chatterjee S, Ghosh R, Mandal NC. Production of bioactive compounds with bactericidal and antioxidant potential by endophytic fungus Alternaria alternata AE1 isolated from Azadirachta indica A Juss. PLoS One. 2019;14(4):e0214744. https://doi.org/10.1371/journal.pone.0214744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pang X-J, Zhang S-B, Chen H-L, Zhao W-T, Yang D-F, Xian P-J, et al. Emericelactones A–D: four novel polyketides produced by Emericella sp. XL 029, a fungus associated the leaves of Panax notoginseng. Tetrahedron Lett. 2018;59:4566–70. https://doi.org/10.1016/j.tetlet.2018.11.032.

  144. Hussain H, Jabeen F, Krohn K, Al-Harrasi A, Ahmad M, Mabood F, et al. Antimicrobial activity of two mellein derivatives isolated from an endophytic fungus. Med Chem Res. 2015;24:2111–4. https://doi.org/10.1007/s00044-014-1250-3.

    Article  CAS  Google Scholar 

  145. Chen S, Liu Y, Liu Z, Cai R, Lu Y, Huang X, et al. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess- glucosidase inhibitory and antibacterial activities. RSC Adv. 2016;6:26412–20. https://doi.org/10.1039/C6RA02566H.

  146. Sadorn K, Saepua S, Boonyuen N, Laksanacharoen P, Rachtawee P, Prabpai S, et al. Allahabadolactones A and B from the endophytic fungus, Aspergillus allahabadii BCC45335. Tetrahedron. 2016;72(4):489–95. https://doi.org/10.1016/j.tet.2015.11.056.

  147. Kokubun T, Veitch NC, Bridge PD, Simmonds MS. Dihydroisocoumarins and a tetralone from Cytospora eucalypticola. Phytochemistry. 2003;62:779–82.

    Article  CAS  PubMed  Google Scholar 

  148. Qi J, Shao CL, Li ZY, Gan LS, Fu XM, Bian WT, et al. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J Nat Prod. 2013;76(4):571–9. https://doi.org/10.1021/np3007556.

  149. Akhter N, Pan C, Liu Y, Shi Y, Wu B. Isolation and structure determination of a new indene derivative from endophytic fungus Aspergillus flavipes Y-62. Nat Prod Res. 2019;33(20):2939–44. https://doi.org/10.1080/14786419.2018.1510399.

    Article  CAS  PubMed  Google Scholar 

  150. Xu R, Li X-M, Wang B-G. Penicisimpins A-C, three new dihydroisocoumarins from Penicillium simplicissimum MA-332, a marine fungus derived from the rhizosphere of the mangrove plant Bruguiera sexangula var. rhynchopetala. Phytochem Lett. 2016;17:114–8. https://doi.org/10.1016/J.PHYTOL.2016.07.003.

    Article  CAS  Google Scholar 

  151. Zhao M, Yuan LY, Guo DL, Ye Y, Da-Wa ZM, Wang XL, et al. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. Phytochemistry. 2018;148:97–103. https://doi.org/10.1016/j.phytochem.2018.01.018.

    Article  CAS  PubMed  Google Scholar 

  152. Ma YM, Ma CC, Li T, Wang J. A new furan derivative from an endophytic Aspergillus flavus of Cephalotaxus fortunei. Nat Prod Res. 2016;30(1):79–84. https://doi.org/10.1080/14786419.2015.1038262.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang W, Krohn K, Draeger S, Schulz B. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod. 2008;71(6):1078–81. https://doi.org/10.1021/np800095g.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang H, Ruan C, Bai X, Chen J, Wang H. Heterocyclic alkaloids as antimicrobial agents of Aspergillus fumigatus D endophytic on Edgeworthia chrysantha. Chem Nat Compd. 2018;54:411–4. https://doi.org/10.1007/s10600-018-2365-4.

    Article  CAS  Google Scholar 

  155. Li R, Chen S, Niu S, Guo L, Yin J, Che Y. Exserolides A-F, new isocoumarin derivatives from the plant endophytic fungus Exserohilum sp. Fitoterapia. 2014;96:88–94. https://doi.org/10.1016/j.fitote.2014.04.013.

    Article  CAS  PubMed  Google Scholar 

  156. Mawabo IK, Nkenfou C, Notedji A, Jouda JB, Lunga P, Eke P, et al. Antimicrobial activities of two secondary metabolites isolated from Aspergillus niger, endophytic fungus harbouring stems of Acanthus montanus. Issues Biol Sci Pharm Res. 2019;7:7–15. https://doi.org/10.15739/ibspr.19.002.

    Article  Google Scholar 

  157. Xu Z, Wu X, Li G, Feng Z, Xu J, Pestalotiopisorin B. a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat Prod Res. 2020;34(7):1002–7. https://doi.org/10.1080/14786419.2018.1539980.

    Article  CAS  PubMed  Google Scholar 

  158. Pinheiro EA, Carvalho JM, dos Santos DC, Feitosa Ade O, Marinho PS, Guilhon GM, et al. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res. 2013;27(18):1633–8. https://doi.org/10.1080/14786419.2012.750316.

    Article  CAS  PubMed  Google Scholar 

  159. El-Agamy DS, Ibrahim SRM, Ahmed N, Khoshhal S, Abo-Haded HM, Elkablawy MA, et al. Aspernolide F, as a new cardioprotective butyrolactone against doxorubicin-induced cardiotoxicity. Int Immunopharmacol. 2019;72:429–36. https://doi.org/10.1016/j.intimp.2019.04.045.

    Article  CAS  PubMed  Google Scholar 

  160. Chen Y, Liu Z, Liu H, Pan Y, Li J, Liu L, et al. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Mar Drugs. 2018;16(2):54. https://doi.org/10.3390/md16020054.

  161. Yang XF, Wang NN, Kang YF, Ma YM. A new furan derivative from an endophytic Aspergillus tubingensis of Decaisnea insignis (Griff.) Hook.f. & Thomson. Nat Prod Res. 2019;33(19):2777–83. https://doi.org/10.1080/14786419.2018.1501687.

    Article  CAS  PubMed  Google Scholar 

  162. Yan W, Wuringege LSJ, Guo ZK, Zhang WJ, Wei W, et al. New p-terphenyls from the endophytic fungus Aspergillus sp. YXf3. Bioorg Med Chem Lett. 2017;27(1):51–4. https://doi.org/10.1016/j.bmcl.2016.11.033.

    Article  CAS  PubMed  Google Scholar 

  163. Chen J, Bai X, Hua Y, Zhang H, Wang H. Fusariumins C and D, two novel antimicrobial agents from Fusarium oxysporum ZZP-R1 symbiotic on Rumex madaio Makino. Fitoterapia. 2019;134:1–4. https://doi.org/10.1016/j.fitote.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  164. Ding Z, Tao T, Wang L, Zhao Y, Huang H, Zhang D, et al. Bioprospecting of novel and bioactive metabolites from endophytic fungi isolated from rubber tree Ficus elastica leaves. J Microbiol Biotechnol. 2019;29(5):731–8. https://doi.org/10.4014/jmb.1901.01015.

  165. Chen S, Li H, Chen Y, Li S, Xu J, Guo H, et al. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma koningiopsis A729. Bioorg Chem. 2019;86:368–74. https://doi.org/10.1016/j.bioorg.2019.02.005.

  166. Subban K, Subramani R, Johnpaul M. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res. 2013;27(16):1445–9. https://doi.org/10.1080/14786419.2012.722091.

    Article  CAS  PubMed  Google Scholar 

  167. Zheng CJ, Huang GL, Liao HX, Mei RQ, Luo YP, Chen GY, et al. Bioactive cytosporone derivatives isolated from the mangrove-derived fungus Dothiorella sp. ML002. Bioorg Chem. 2019;85:382–5. https://doi.org/10.1016/j.bioorg.2019.01.015.

  168. Yan C, Liu W, Li J, Deng Y, Chen S, Liu H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp.YD-2. RSC Adv. 2018;8:14823–8. https://doi.org/10.1039/C8RA02430H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu R, Li H, Yang J, An Z. Quinazolinones isolated from Aspergillus sp., an endophytic fungus of Astragalus membranaceus. Chem Nat Compd. 2018;54:808–10. https://doi.org/10.1007/s10600-018-2484-y.

    Article  CAS  Google Scholar 

  170. Wu YZ, Zhang HW, Sun ZH, Dai JG, Hu YC, Li R, et al. Bysspectin A, an unusual octaketide dimer and the precursor derivatives from the endophytic fungus Byssochlamys spectabilis IMM0002 and their biological activities. Eur J Med Chem. 2018;145:717–25. https://doi.org/10.1016/j.ejmech.2018.01.030.

  171. Akpotu MO, Eze PM, Abba CC, Umeokoli BO, Nwachukwu CU, Okoye FBC, et al. Antimicrobial activities of secondary metabolites of endophytic fungi isolated from Catharanthus roseus. J Health Sci. 2017;7(1):15–22.

    Google Scholar 

  172. Liang Y, Xu W, Liu C, Zhou D, Liu X, Qin Y, et al. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat Prod Res. 2019;33(9):1304–9. https://doi.org/10.1080/14786419.2018.1472597.

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that this review work on antibacterial compounds was done by the authors and all liabilities on claims relating to the content of this article will be borne by them. Ravindra Prasad Aharwal and Suneel Kumar contributed equally to this work and should be considered as co-first authors.

Corresponding author

Correspondence to Sardul Singh Sandhu.

Ethics declarations

Conflict of Interest

No conflict of interest associated with this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology.

Supplementary Information

ESM 1

(DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharwal, R.P., Kumar, S. & Sandhu, S.S. Endophytic Mycoflora: Antibacterial Secondary Metabolites and Their Therapeutic Potential. Curr Pharmacol Rep 7, 150–170 (2021). https://doi.org/10.1007/s40495-021-00261-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00261-w

Keywords

Navigation