Skip to main content
Log in

Alterations in Host Lipid Metabolism Produced During Visceral Leishmaniasis Infections

  • Metabolism in Tropical Medicine (K Schlosser Montes, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Leishmania is an obligate intracellular parasite that depends on the host’s own lipid reservoirs to ensure its survival. The use of fats ranges from energy obtention to evasion of immune response, so this would alter the host’s lipid metabolism somehow. This article aims to review lipid metabolism of both parasite and host, and how the former affects the latter.

Recent Findings

Leishmania uses the host’s cholesterol to ensure macrophage phagocytosis and evade immune response. Additionally, the host’s lipid bodies have key roles in disease progression and development of the parasite inside the cell. This induces changes in the patient’s serum lipid profile like hypertriglyceridemia and low HDL levels.

Summary

Changes in the lipid profile and metabolism in both parasite and host during development of the disease depend on the presence of lipid bodies. Further research is required to fully understand the relationship between the interactions between lipid metabolism of host and parasite, immune response, and the prognosis of the disease (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rabhi S, Rabhi I, Bernadette T, Piquemal D, Regnault B, Goyard S, et al. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage infection. PLoS One. 2016;11(2):e0148640. https://doi.org/10.1371/journal.pone.0148640.

    Article  CAS  PubMed  Google Scholar 

  2. CDC. Leishmaniasis. 2017. Available from: https://www.cdc.gov/dpdx/leishmaniasis/index.html.

  3. Costa-Barbossa F, Viera T, dos Santos M, dos Campos N, Ribeiro K, Cronemberg A, et al. Extracellular vesicles released by Leishmania (Leishmania) amazonensis promote disease progression and induce the production of different cytokines in macrophages and B-1 cells. Front Microbiol. 2018;9. https://doi.org/10.3989/fmicb.2018.03056.

  4. McConville M, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol. 2011;6:543–61. https://doi.org/10.1146/annurev-micro-090110-102913.

    Article  CAS  Google Scholar 

  5. Carroll K, Butel J, Morse S, Mietzner T. Parasitology: blood and tissue protozoan infections. In: Jawetz, Melnick & Adelberg’s Medical Microbiology. New York. 2016.

  6. Organización Panamericana de la Salud. Leishmaniasis: Informe Epidemiológico de las Américas. Informe de Leishmaniasis N7: 2019.

  7. Semini G, Paape D, Paterou A, Schroeder J, Barrios-Llerena M, Aebischer T. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection. Wiley Microbiol Open. 2015;6:469. https://doi.org/10.1002/mbo3.469.

    Article  CAS  Google Scholar 

  8. Gosh J, Das S, Guba R, Gosh D, Naskar K, Das A, et al. Hyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol. J Lipid Res. 2012;53:2560–72. https://doi.org/10.1194/jhr.M026914.

    Article  Google Scholar 

  9. Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, et al. Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog. 2009;5(12)):e1000692.

    Article  Google Scholar 

  10. Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, et al. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 2006;103(14):5502–7.

    Article  CAS  Google Scholar 

  11. Hart DT, Coombs GH. Leishmania mexicana: Energy metabolism of amastigotes and promastigotes. Exp Parasitol. 1982;54(3):397–409.

    Article  CAS  Google Scholar 

  12. •• Filippas-Ntekouan S, Liberopoulos E, Elisaf M. Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection. 2017;45:575–88. https://doi.org/10.1007/s15010-017-1022-3. Filippas-Ntekouan. et al.provides important information about possible diagnostic indicators of leishmaniasis and their relationship with lipid metabolism of the infected host.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol. 2010;170(2):1–22.

    Article  CAS  Google Scholar 

  14. •• Biagiotti M, Dominguez S, Yamout N, Zufferey R. Lipidomics and anti-trypanosomatid chemotherapy. Clin Transl Med. 2017;6(1). Biagiotti, Dominguez, Yamout and Zufferey wrote a review that establishes the utility of lipidomics to identify new lipids and determine changes in the lipid profile between Trypanosomatids.):27.

    Article  Google Scholar 

  15. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol. 2003;126(2):129–42.

    Article  CAS  Google Scholar 

  16. • Yao C, Wilson ME. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form. Parasit Vectors. 2016;9(1):1–12. https://doi.org/10.1186/s13071-016-1470-0Yao and Wilson describe the results of a GC-MS analysis to determine the changes in sterol synthesis during metacyclogenesis ofLeishmania infantumparasites.

    Article  CAS  Google Scholar 

  17. Bouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S. Changes in lipid and fatty acid composition during intramacrophagic transformation of Leishmania donovani complex promastigotes into amastigotes. Lipids. 2017;52(5):433–41.

    Article  CAS  Google Scholar 

  18. Rodríguez N, Lockard R, Turcotte E, Araujo-Santos T, Bozza P, Borges V, et al. Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol. 2017;39:8. https://doi.org/10.1111/pim.12443.

    Article  CAS  Google Scholar 

  19. Lal C, Verma R, Verma N, Siddiqui N, Rabidas N, Pandey K, et al. Hypertriglyceridemia: a possible diagnostic marker of disease severity in visceral leishmaniasis. Infection. 2015;44:39–45. https://doi.org/10.1007/s15010-015-0811-9.

    Article  CAS  PubMed  Google Scholar 

  20. Liberopoulos E, Apostolou F, Gazi I, Kostara C, Bairaktari E, Tselepis A, et al. Visceral leishmaniasis is associated with marked changes in serum lipid profile. Eur J Clin Investig. 2013;44:719–27. https://doi.org/10.1111/eci.12288.

    Article  CAS  Google Scholar 

  21. • Lima A, Teixeira L, da Silva K, Menezes C, Bozza P. Lipid droplet, a key player in host-parasite interactions. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.01022Lima.et al.explains the dynamics of the lipid bodies and the mechanisms of formation during infectious disease such as leishmaniasis.

  22. Bozza P, D’Avila H, Almeida P, Magalhâes K, Almeida C, Maya-Monteiro C. Lipid droplets in host-pathogen interactions. Clin Lipidol. 2009;4(6):791–807. https://doi.org/10.2217/clp.09.63.

    Article  CAS  Google Scholar 

  23. Gosh J, Bose M, Roy S, Bhattacharyya S. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol and facilitate murine liver infection. Cell Host Microbe. 2013;13:277–88. https://doi.org/10.1016/j.chom.2013.02.005.

    Article  CAS  Google Scholar 

  24. Paswan R, Bimal S, Kumari A, Sinha P, Rabidas V, Pandey K, et al. Reduced high density lipoprotein concentration modulates increased interleukin-10 and decreased interferon-gamma in visceral Leishmaniasis patients. 2016;4:2. https://doi.org/10.4172/2237-5146.1000233.

  25. Nelson DL, Cox MM. Cholesterol, steroids and isoprenoids: biosynthesis, regulation and transport. In: Lehninger Principles of Biochemistry. New York: W.H. Freeman; 2017.

    Google Scholar 

  26. Bansal D, Singh H, Sehgal R. Role of cholesterol in parasitic infections. Lipids Health Dis. 2005;4:10. https://doi.org/10.1186/1476-511X-4-10.

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty D, Banerjee S, Sen A, Banerjee K, Das P, Roy S. Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. J Immunol. 2005;175:3214–24. https://doi.org/10.4049/jimmunol.175.5.3214.

    Article  CAS  PubMed  Google Scholar 

  28. Feingold K, Grunfeld C. Lipids: a key player in the battle between the host and microorganisms. J Lipid Res. 2005;53:2560–72. https://doi.org/10.1194/jlr.E033407.

    Article  CAS  Google Scholar 

  29. Descoteaux A, Moradin N, Arango G. Leishmania dices away cholesterol for survival. Cell Host Microbe. 2013;13. https://doi.org/10.1016/j.chom.2013.02.018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Martínez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism in Tropical Medicine

Glossary of Key Terms

apoA1

Apolipoprotein A1

apoB

Apolipoprotein B

CL

Cutaneous leishmaniasis

ER

Endoplasmic reticulum

EV

Extracellular vesicles

GC-MS

Gas chromatography-mass spectrometry

GPI

Glycosylphosphatidyliositol

HDL

High density lipoprotein

HMG-CoA

β-Hydroxy β-methylglutaryl-CoA

LB

Lipid bodies

LD

Lipid droplets

LDL

Low density lipoprotein

Lp(a)

Lipoprotein a

MiRNAs

Micro ribonucleic acids

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PI

Phosphatidylinositol

PV

Parasitophorous vacuoles

SL

Sphingolipids

TAGs

Triacylglyceros

TNF

Tumor necrosis factor

VL

Visceral leishmaniasis

VLDL

Very low density lipoprotein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, C.R., Ruiz, C.J. Alterations in Host Lipid Metabolism Produced During Visceral Leishmaniasis Infections. Curr Trop Med Rep 6, 250–255 (2019). https://doi.org/10.1007/s40475-019-00187-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-019-00187-w

Keywords

Navigation