Skip to main content

Tool-Servo Driven Diamond Turning for Structured Surface

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT,volume 1))

  • 242 Accesses

Abstract

Structured surfaces are increasingly demanded in many fields. Ultraprecision cutting is an effective method for machining structured surfaces with high form accuracy, surface quality, and flexibility of geometry. In recent years, tool-servo driven diamond turning has been focused, because it can greatly reduce the machining time for structured surfaces compared to other methods. However, unlike in conventional diamond turning, the tool posture and cutting behavior in tool-servo driven diamond turning change significantly with time. Thus, the machining mechanism becomes very complicated, especially for brittle materials. In this chapter, after the recent advances in tool-servo driven diamond turning technology have been overviewed, the fabrication process of microlens arrays on single-crystal silicon by slow tool servo (STS) driven diamond turning will be introduced. The fundamental machining mechanisms including the brittle fracture and phase transformation of silicon will be discussed, and the feasibility of ductile mode cutting will be demonstrated. In STS, machining of microlens arrays with sharp edges, the follow-up error of the machine tool is a potential problem. To reduce the follow-up error, a new method named segment turning method was proposed. From the results of both cutting tests and theoretical analysis, the effectiveness of the proposed method will be examined. Hexagonal microlens arrays of silicon have been successfully machined with a form error less than 300 nmPV and surface roughness less than 5 nmSa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albero J, Nieradko L, Gorecki C, Ottevaere H, Gomez V, Thienpont H, Pietarinen J, Päivänranta B, Passilly N (2009) Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. Opt Express 17(8):6283–6292

    Article  Google Scholar 

  • Arase H, Matsushita A, Itou A, Asano T, Hayashi N, Inoue D, Futakuchi R, Inoue K, Nakagawa T, Yamamoto M, Fujii E, Anda Y, Ishida H, Ueda T, Fidaner O, Wiemer M, Ueda D (2014) A novel thin concentrator photovoltaic with microsolar cells directly attached to a lens array. IEEE J Photovoltaics 4(2):709–712

    Article  Google Scholar 

  • Asakura K, Yan J (2015) Water repellency control of oxygen-free copper surface by diamond-cut micro grooves. Int J Autom Technol 9(4):396–402

    Article  Google Scholar 

  • Bitterli R, Scharf T, Herzig HP, Noell W, Rooij N, Bich A, Roth S, Weible KJ, Voelkel R, Zimmermann M, Schmidt M (2010) Fabrication and characterization of linear diffusers based on concave micro lens arrays. Opt Express 18(13):14251–14261

    Article  Google Scholar 

  • Brinksmeier E, Gläbe R, Flucke C (2008) Manufacturing of molds for replication of micro cuve corner retroreflectors. Prod Eng 2:33–38

    Article  Google Scholar 

  • Chang CY, Yang SY, Huang LS, Chang JH (2006) Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold. Infra Phys Technol 48:163–173

    Article  Google Scholar 

  • Chen CC, Huang CY, Peng WJ, Cheng YC, Yu ZR, Hsu WY (2013) Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning. In: Proceedings of SPIE 8838; 88380Y-1-8

    Google Scholar 

  • Chou MC, Pan CT, Shen SC, Chen MF, Lin KL, Wu ST (2005) A novel method to fabricate gapless hexagonal micro-lens array. Sens Actuators A 118:298–306

    Article  Google Scholar 

  • Davis GE, Roblee JW, Hedges AR (2009) Comparison of freeform manufacturing techniques in the production of monolithic lens arrays. In: Proceedings of SPIE 7426, 742605–1-8

    Google Scholar 

  • Deng Z, Yang Q, Chen F, Meng X, Bian H, Yong J, Shan C, Hou X (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931

    Article  Google Scholar 

  • Fang FZ, Zhang XD, Hu XT (2008) Cylindrical coordinate machining of optical freeform surfaces. Opt Express 16(10):7323–7329

    Article  Google Scholar 

  • Harvey JE, Schröder S, Choi N, Duparré A (2012) Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles. Opt Eng 51(1):013402-1-11

    Article  Google Scholar 

  • He P, Li L, Li H, Yu J, James Lee L, Yi AY (2014) Compression molding of glass freeform optics using diamond machined silicon mold. Manuf Lett 2:17–20

    Article  Google Scholar 

  • Hjalmarsson H (2005) From experiment design to closed-loop control. Automatica 41:393–438

    Article  MathSciNet  Google Scholar 

  • Jeong KH, Kim J, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312:557–561

    Article  Google Scholar 

  • Kim J, Kim CJ (2002) Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics. In: The fifteenth IEEE international conference on micro electro mechanical systems, pp 479–482

    Google Scholar 

  • Kurniawan R, Kiswanto G, Ko TJ (2016) Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. Int J Mach Tools Manuf 106:127–140

    Article  Google Scholar 

  • Lalanne P, Morris GM (1997) Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8:53–55

    Article  Google Scholar 

  • Mukaida M, Yan J (2017a) Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf 115:2–14

    Article  Google Scholar 

  • Mukaida M, Yan J (2017b) Fabrication of hexagonal microlens arrays on single-crystal silicon using the tool-servo driven segment turning method. Micromachines 8:323

    Article  Google Scholar 

  • Neo DWK, Kumar AS, Rahman M (2014) A novel surface analytical model for cutting linearization error in fast tool/slow slide servo diamond turning. Precis Eng 38:849–860

    Article  Google Scholar 

  • Oliveira OG, Lima Monteiro DW, Costa RFO (2014) Optimized microlens-array geometry for Hartmann-shack wavefront sensor. Opt Lasers Eng 55:155–161

    Article  Google Scholar 

  • Onozawa K, Toshikiyo K, Yogo T, Ishii M, Yamanaka K, Matsuno T, Ueda D (2008) A MOS image sensor with a digital-microlens. IEEE Trans Electron Devices 55(4):986–991

    Article  Google Scholar 

  • Ottevaere H, Cox R, Herzig HP, Miyashita T, Naessens K, Taghizadeh M, Völkel R, Woo HJ, Thienpont H (2006) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A Pure Appl Opt 8:S407–S429

    Article  Google Scholar 

  • Ow YS, Breese MBH, Azimi S (2010) Fabrication of concave silicon micro-mirrors. Opt Express 18(14):14511–14518

    Article  Google Scholar 

  • Patterson SR, Magrab EB (1985) Design and testing of a fast tool servo for diamond turning. Precis Eng 7(3):123–128

    Article  Google Scholar 

  • Rakuff S, Cuttino JF (2009) Design and testing of a long-range, precision fast tool servo system for diamond turning. Precis Eng 33:18–25

    Article  Google Scholar 

  • Scheiding S, Yi AY, Gebhardt A, Loose R, Li L, Risse S, Eberhardt R, Tünnermann A (2011) Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies. In: Proceedings of SPIE 7927, 79270N-1-11

    Google Scholar 

  • Stevens R, Miyashita T (2010) Review of standards for microlenses and microlens arrays. The Imaging Sci J 58(4):202–212

    Article  Google Scholar 

  • Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tools Manuf 47:1302–1310

    Article  Google Scholar 

  • Wang H, Yang S (2013) Design and control of a fast tool servo used in noncircular piston turning process. Mech Syst Signal Process 36:87–94

    Article  Google Scholar 

  • Weck M, Hennig J, Hilbing R (2001) Precision cutting processes for manufacturing of optical components. Proc SPIE 4440:145–151

    Article  Google Scholar 

  • Yan J, Syoji K, Tamaki J (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255:1380–1387

    Article  Google Scholar 

  • Yan J, Asami T, Harada H, Kuriyagawa T (2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33:378–386

    Article  Google Scholar 

  • Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann 61:131–134

    Article  Google Scholar 

  • Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30(13):1707–1709

    Article  Google Scholar 

  • Yu DP, Wong YS, Hong GS (2011a) Ultraprecision machining of micro-structured functional surfaces on brittle materials. J Micromech Microeng 21(9):11

    Article  Google Scholar 

  • Yu DP, Hong GS, Wong YS (2011b) Integral sliding mode control for fast tool servo diamond turning of micro-structured surfaces. Int J Autom Technol 5:4–10

    Article  Google Scholar 

  • Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 52:13–23

    Article  Google Scholar 

  • Zhang X, Fang F, Yu LH, Jiang L, Guo Y (2013) Slow slide servo turning of compound eye lens. Opt Eng 52(2):023401-1-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukaida, M., Yan, J. (2018). Tool-Servo Driven Diamond Turning for Structured Surface. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-6588-0_7-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6588-0_7-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6588-0

  • Online ISBN: 978-981-10-6588-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Tool-Servo Driven Diamond Turning for Structured Surface
    Published:
    18 April 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_7-2

  2. Original

    Tool-Servo Driven Diamond Turning for Structured Surface
    Published:
    27 February 2018

    DOI: https://doi.org/10.1007/978-981-10-6588-0_7-1