Skip to main content

Advertisement

Log in

On the generalized Chikungunya virus dynamics model with distributed time delays

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a stability analysis of a general nonlinear Chikungunya virus dynamics model is presented. Two kinds of infected cells, namely latently infected and actively infected are incorporated into the model. It is assumed that, the incidence rate of infection as well as the production, removal and proliferation rates of all compartments are modeled by general nonlinear functions that satisfy sufficient conditions. The model contains two distributed time delays. The nonnegativity and boundedness of the solutions of the model are investigated. Constructions of suitable Lyapunov functionals are established to prove the global stability of the steady states of the model. Numerical simulations are performed to confirm the validity of the established theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-I: dynamics in Vivo. SIAM Rev 41:3–44

    MathSciNet  MATH  Google Scholar 

  2. Shehata AM, Elaiw AM, Elnahary EK, Abul-Ez M (2017) Stability analysis of humoral immunity HIV infection models with RTI and discrete delays. Int J Dyn Control 5:811–831

    MathSciNet  Google Scholar 

  3. Roy PK, Chatterjee AN, Greenhalgh D, Khan QJA (2013) Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model. Nonlinear Anal Real World Appl 14:1621–1633

    MathSciNet  MATH  Google Scholar 

  4. Liu S, Wang L (2010) Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Math Biosci Eng 7(3):675–685

    MathSciNet  MATH  Google Scholar 

  5. Rajchakit G, Chanthorn P, Niezabitowski M, Raja R, Baleanu D, Pratap A (2020) Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks. Neurocomputing 417:290–301

    Google Scholar 

  6. Sriraman R, Rajchakit G, Lim CP, Chanthorn P, Samidurai R (2020) Discrete-time stochastic quaternion-valued neural networks with time delays: an asymptotic stability analysis. Symmetry 12:936

    Google Scholar 

  7. Li X, Fu S (2015) Global stability of a virus dynamics model with intracellular delay and CTL immune response. Math Methods Appl Sci 38:420–430

    MathSciNet  MATH  Google Scholar 

  8. Elaiw AM, AlShamrani NH (2016) Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates. Int J Dyn Control 4:303–317

    MathSciNet  Google Scholar 

  9. Li B, Chen Y, Lu X, Liu S (2016) A delayed HIV-1 model with virus waning term. Math Biosci Eng 13:135–157

    MathSciNet  MATH  Google Scholar 

  10. Humphries U, Rajchakit G, Kaewmesri P, Chanthorn P, Sriraman R, Samidurai R, Lim CP (2020) Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks. Mathematics 8:801

    Google Scholar 

  11. Chanthorn P, Rajchakit G, Thipcha J, Emharuethai C, Sriraman R, Lim CP, Ramachandran R (2020) Robust stability of complex-valued stochastic neural networks with time-varying delays and parameter uncertainties. Mathematics 8:742

    Google Scholar 

  12. Monica C, Pitchaimani M (2016) Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays. Nonlinear Anal Real World Appl 27:55–69

    MathSciNet  MATH  Google Scholar 

  13. Wang K, Fan A, Torres A (2010) Global properties of an improved hepatitis B virus model. Nonlinear Anal Real World Appl 11:3131–3138

    MathSciNet  MATH  Google Scholar 

  14. Gourley SA, Kuang Y, Nagy JD (2008) Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dyn 2(2):140–153

    MathSciNet  MATH  Google Scholar 

  15. Li J, Wang K, Yang Y (2011) Dynamical behaviors of an HBV infection model with logistic hepatocyte growth. Math Comput Model 54:704–711

    MathSciNet  MATH  Google Scholar 

  16. Yousfi N, Hattaf K, Tridane A (2011) Modeling the adaptive immune response in HBV infection. J Math Biol 63:933–957

    MathSciNet  MATH  Google Scholar 

  17. Elaiw AM, Ghaleb SA, Hobiny A (2018) Effect of time delay and antibodies on HCV dynamics with cure rate and two routes of infection. J Appl Math Phys 6(5):1120–1138

    Google Scholar 

  18. Zhang S, Xu X (2017) Dynamic analysis and optimal control for a model of hepatitis C with treatment. Commun Nonlinear Sci Numer Simul 46:14–25

    MathSciNet  MATH  Google Scholar 

  19. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107

    Google Scholar 

  20. Abidemi A, Abd Aziz MI, Ahmad R (2019) The impact of vaccination, individual protection, treatment and vector controls on dengue. Eng Lett 27(3):613–622

    Google Scholar 

  21. Abidemi A, Abd Aziz MI, Ahmad R (2020) Mathematical modelling of coexistence of two dengue virus serotypes with seasonality effect. J Comput Theor Nanosci 17(2–3):783–794

    Google Scholar 

  22. Abidemi A, Abd Aziz MI, Ahmad R (2020) Vaccination and vector control effect on dengue virus transmission dynamics. Model Simul Chaos Solitons Fractals 133:109648

    MathSciNet  Google Scholar 

  23. Elaiw AM, Alade TO, Alsulami SM (2019) Stability of a within-host Chikungunya virus dynamics model with latency. J Comput Anal Appl 26(5):777–790

    Google Scholar 

  24. Elaiw AM, Alade TO, Alsulami SM (2018) Analysis of within-host CHIKV dynamics models with general incidence rate. J Biomath Int. https://doi.org/10.1142/S1793524518500626

    Article  MATH  Google Scholar 

  25. Elaiw AM, Alade TO, Alsulami SM (2018) Global stability of within-host virus dynamics models with multitarget cells. Mathematics 6:118. https://doi.org/10.3390/math6070118

    Article  Google Scholar 

  26. Wang Y, Liu X (2017) Stability and Hopf bifurcation of a within-host Chikungunya virus infection model with two delays. Math Comput Simul 138:31–48

    MathSciNet  MATH  Google Scholar 

  27. Alade TO, Elaiw AM, Alsulami SM (2020) Stability dynamics of a delayed generalized Chikungunya virus infection model. J Appl Math Comput. https://doi.org/10.1007/s12190-020-01405-9

    Article  Google Scholar 

  28. Elaiw AM, Alade TO, Alsulami SM (2019) Analysis of latent CHIKV dynamics model with time delays. J Comput Anal Appl 27(1):19–36

    MATH  Google Scholar 

  29. Elaiw AM, Alade TO, Alsulami SM (2018) Global dynamics of delayed CHIKV infection model with multitarget cells. J Appl Math Comput 22:1–2. https://doi.org/10.1007/s12190-018-1215-7

    Article  MATH  Google Scholar 

  30. Intayot P, Phumee A, Boonserm R, Sor-Suwan S, Buathong R, Wacharapluesadee S, Brownell N, Poovorawan Y, Siriyasatien P (2019) Genetic characterization of Chikungunya virus in field-caught Aedes aegypti mosquitoes collected during the recent outbreaks in 2019, Thailand. Pathogens 8(3):121

    Google Scholar 

  31. Passos GFS, Gomes MGM, Aquino TM, Araújo-Júnior JX, Souza SJM, Cavalcante JPM, Santos EC, Bassi EJ, Silva-Júnior EF (2020) Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3–E2–E1 glycoproteins complex from Chikungunya virus. Pharmaceuticals 13(7):141

    Google Scholar 

  32. Agusto FB (2017) Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of Chikungunya virus. Discrete Contin Dyn Syst B 22(3):687–715

    MathSciNet  MATH  Google Scholar 

  33. Liu X, Wang Y, Zhao X-Q (2020) Dynamics of a climate-based periodic Chikungunya model with incubation period. Appl Math Model 80:151–168

    MathSciNet  MATH  Google Scholar 

  34. Elaiw AM, Alade TO, Alsulami SM (2018) Analysis of latent CHIKV dynamics models with general incidence rate and time delays. J Biol Dyn 12(1):700–730

    MathSciNet  MATH  Google Scholar 

  35. Dumont Y, Chiroleu F (2010) Vector control for the Chikungunya disease. Math Biosci Eng 7:313–345

    MathSciNet  MATH  Google Scholar 

  36. Dumont Y, Tchuenche JM (2012) Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J Math Biol 65(5):809–854

    MathSciNet  MATH  Google Scholar 

  37. Dumont Y, Chiroleu F, Domerg C (2008) On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math Biosci 213:80–91

    MathSciNet  MATH  Google Scholar 

  38. Moulay D, Aziz-Alaoui M, Cadivel M (2011) The Chikungunya disease: modeling, vector and transmission global dynamics. Math Biosci 229:50–63

    MathSciNet  MATH  Google Scholar 

  39. Moulay D, Aziz-Alaoui M, Kwon HD (2012) Optimal control of Chikungunya disease: larvae reduction, treatment and prevention. Math Biosci Eng 9:369–392

    MathSciNet  MATH  Google Scholar 

  40. Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM (2014) Comparing dengue and Chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J Theor Biol 356:174–191

    MathSciNet  MATH  Google Scholar 

  41. Yakob L, Clements AC (2013) A mathematical model of Chikungunya dynamics and control: the major epidemic on Reunion Island. PLoS ONE 8:e57448

    Google Scholar 

  42. Liu X, Stechlinski P (2015) Application of control strategies to a seasonal model of Chikungunya disease. Appl Math Model 39:3194–3220

    MathSciNet  MATH  Google Scholar 

  43. Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4\(\mathit{+}\) T cells. Math Biosci 200(1):44–57

    MathSciNet  MATH  Google Scholar 

  44. Leenheer PD, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63(4):1313–1327

    MathSciNet  MATH  Google Scholar 

  45. Hattaf K, Yousfi N (2016) A generalized virus dynamics model with cell-to-cell transmission and cure rate. Adv Differ Equ 1:174

    MathSciNet  MATH  Google Scholar 

  46. Hattaf K, Yousfi N (2016) A numerical method for a delayed viral infection model with general incidence rate. J King Saud Univ Sci 28(4):368–374

    MATH  Google Scholar 

  47. Wang XY, Hattaf K, Huo HF, Xiang H (2016) Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. J Ind Manag Optim 12(4):1267–1285

    MathSciNet  MATH  Google Scholar 

  48. Yang X, Chen L, Chen J (1996) Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput Math Appl 32(4):109–116

    MathSciNet  MATH  Google Scholar 

  49. Hale JK, Verduyn Lunel SM (1993) Introduction to Functional Differential Equations. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for very helpful comments and suggestions which have improved the presentation and the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taofeek O. Alade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alade, T.O. On the generalized Chikungunya virus dynamics model with distributed time delays. Int. J. Dynam. Control 9, 1250–1260 (2021). https://doi.org/10.1007/s40435-020-00723-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00723-x

Keywords

Navigation