Skip to main content

Advertisement

Log in

Stability dynamics of a delayed generalized Chikungunya virus infection model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a general nonlinear Chikungunya virus (CHIKV) dynamics model is formulated and analyzed. We assume that, the production, removal and proliferation rates of all compartments as well as the incidence rate of infection are modeled by general nonlinear functions that satisfy a set of reasonable conditions. The model is incorporated by two types of discrete time delays. We prove the nonnegativity and boundedness of the solutions of the model. We established the global stability of the steady states of the model by constructing suitable Lyapunov functionals. The numerical simulations are performed to illustrate our theoretical results. The effect of time delay on the virus dynamics is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-I: dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Google Scholar 

  3. Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University, Oxford (2000)

    MATH  Google Scholar 

  4. Elaiw, A.M., Hassanien, I.A., Azoz, S.A.: Global stability of HIV infection models with intracellular delays. J. Korean Math. Soc. 49(4), 779–794 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Roy, P.K., Chatterjee, A.N., Greenhalgh, D., Khan, Q.J.A.: Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model. Nonlinear Anal.: Real World Appl. 14, 1621–1633 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Connell McCluskey, C., Yang, Y.: Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal.: Real World Appl. 25, 64–78 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Elaiw, A.M., AlShamrani, N.H.: Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response. Math. Methods Appl. Sci. 40(3), 699–719 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Elaiw, A.M., Raezah, A.A.: Stability of general virus dynamics models with both cellular and viral infections and delays. Math. Methods Appl. Sci. 40(16), 5863–5880 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Li, X., Fu, S.: Global stability of a virus dynamics model with intracellular delay and CTL immune response. Math. Methods Appl. Sci. 38, 420–430 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Elaiw, A.M., Alshaikh, M.A.: Stability analysis of a general discrete-time pathogen infection model with humoral immunity. J. Differ. Equ. Appl. 25(8), 1149–1172 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Hattaf, K., Yousfi, N., Tridane, A.: Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal.: Real World Appl. 13(4), 1866–1872 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Elaiw, A.M., AlShamrani, N.H.: Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays. Math. Methods Appl. Sci. 36, 125–142 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Elaiw, A.M., AlShamrani, N.H.: Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells. Commun. Nonlinear Sci. Numer. Simul. 86, Article ID 105259 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Global dynamics of delayed CHIKV infection model with multitarget cells. J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-1215-7

    Article  MATH  Google Scholar 

  15. Bellomo, N., Painter, K.J., Tao, Y., Winkler, M.: Occurrence vs. absence of taxis-driven instabilities in a May–Nowak model for virus infection. SIAM J. Appl. Math. 79(5), 1990–2010 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Elaiw, A.M., Alshaikh, M.A.: Stability of discrete-time HIV dynamics models with three categories of infected CD4\(^{+} \) T-cells. Adv. Differ. Equ. 2019, Article Number: 407 (2019)

    MathSciNet  Google Scholar 

  17. Bellomo, N., Tao, Y.: Stabilization in a chemotaxis model for virus infection. Discrete Continu. Dyn. Syst.-Ser. S 13(2), 105–117 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Stability of a within-host Chikungunya virus dynamics model with latency. J. Comput. Anal. Appl. 26(5), 777–790 (2019)

    Google Scholar 

  19. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Analysis of latent CHIKV dynamics models with general incidence rate and time delays. J. Biol. Dyn. 12(1), 700–730 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Analysis of latent CHIKV dynamics model with time delays. J. Comput. Anal. Appl. 27(1), 19–36 (2019)

    MATH  Google Scholar 

  21. Huang, D., Zhang, X., Guo, Y., Wang, H.: Analysis of an HIV infection model with treatments and delayed immune response. Appl. Math. Model. 40(4), 3081–3089 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Wang, K., Fan, A., Torres, A.: Global properties of an improved hepatitis B virus model. Nonlinear Anal.: Real World Appl. 11, 3131–3138 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Neumann, A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103–107 (1998)

    Google Scholar 

  24. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Global stability of within-host virus dynamics models with multitarget cells. Mathematics 6, 118 (2018). https://doi.org/10.3390/math6070118

    Article  Google Scholar 

  25. Elaiw, A.M., Alade, T.O., Alsulami, S.M.: Analysis of within-host CHIKV dynamics models with general incidence rate. Int. J. Biomath. (2018). https://doi.org/10.1142/S1793524518500626

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, L.M., Li, X.Z., Fang, B., Ruan, S.: Global properties of vector host model with time delays. J. Math. Biol. 74(6), 1397–1423 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Li, M., Shu, H.: Global dynamics of a mathematical model for HTLV-I infection of CD4+ T-cells. Appl. Math. Model. 35(7), 3587–3595 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Liu, X.: Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays. Math. Comput. Simul. 138, 31–48 (2017)

    MathSciNet  Google Scholar 

  29. WHO: Chikungunya: fact sheet (2017). http://www.who.int/mediacentre/factsheets/fs327/en/

  30. Dumont, Y., Chiroleu, F.: Vector control for the chikungunya disease. Math. Biosci. Eng. 7, 313–345 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Dumont, Y., Tchuenche, J.M.: Mathematical studies on the sterile insect technique for the chikungunya disease and aedes albopictus. J. Math. Biol. 65(5), 809–854 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Dumont, Y., Chiroleu, F., Domerg, C.: On a temporal model for the chikungunya disease: modeling, theory and numerics. Math. Biosci. 213, 80–91 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Moulay, D., Aziz-Alaoui, M., Cadivel, M.: The chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci. 229, 50–63 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Moulay, D., Aziz-Alaoui, M., Kwon, H.D.: Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Math. Biosci. Eng. 9, 369–392 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Manore, C.A., Hickmann, K.S., Xu, S., Wearing, H.J., Hyman, J.M.: Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J. Theor. Biol. 356, 174–191 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Yakob, L., Clements, A.C.: A mathematical model of chikungunya dynamics and control: the major epidemic on Reunion Island. PLoS ONE 8, e57448 (2013)

    Google Scholar 

  37. Liu, X., Stechlinski, P.: Application of control strategies to a seasonal model of chikungunya disease. Appl. Math. Model. 39, 3194–3220 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 70(7), 2693–2708 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Wang, L., Li, M.Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 200(1), 44–57 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Leenheer, P.D., Smith, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313–1327 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 70(7), 2693–2708 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Georgescu, P., Hsieh, Y.H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J. Appl. Math. 67(2), 337–353 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Elaiw, A.M., AlShamrani, N.H.: Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Anal.: Real World Appl. 26, 161–190 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Hale, J.K., Verduyn Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  45. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  46. Yang, X., Chen, L., Chen, J.: Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput. Math. Appl. 32(4), 109–116 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Diekmann, O., Heesterbeek, J., Metz, J.A.: On the definition and the computation of the basic reproduction ratio R\(_{{0}} \) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    MathSciNet  MATH  Google Scholar 

  48. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883 (2004)

    MathSciNet  MATH  Google Scholar 

  50. Elaiw, A.M.: Global properties of a class of HIV models. Nonlinear Anal.: Real World Appl. 11(4), 2253–2263 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Elaiw, A.M., Alshehaiween, S.F., Hobiny, A.D.: Global properties of a delay-distributed HIV dynamics model including impairment of B-cell functions. Mathematics 7(9), Article Number: 837 (2019)

    Google Scholar 

  52. Elaiw, A.M., Elnahary, E.K., Raezah, A.A.: Effect of cellular reservoirs and delays on the global dynamics of HIV. Adv. Differ. Equ. 2018(1), Article Number: 85 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Elaiw, A.M., Raezah, A.A., Azoz, S.A.: Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment. Adv. Differ. Equ. 2018(1), Article Number: 414 (2018)

  54. Hobiny, A.D., Elaiw, A.M., Almatrafi, A.: Stability of delayed pathogen dynamics models with latency and two routes of infection. Adv. Differ. Equ. f2018(1), Article Number: 276 (2018)

  55. Elaiw, A.M., Elnahary, E.K.: Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays. Mathematics, 7(2). Article Number: 157 (2019)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful suggestions that greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taofeek O. Alade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alade, T.O., Elaiw, A.M. & Alsulami, S.M. Stability dynamics of a delayed generalized Chikungunya virus infection model. J. Appl. Math. Comput. 65, 575–595 (2021). https://doi.org/10.1007/s12190-020-01405-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01405-9

Keywords

Mathematics Subject Classification

Navigation