Skip to main content
Log in

Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A novel autonomous chaotic Jerk system with a nonlinearity in the form \( \phi_{k} \left( x \right) = 0.5\left( {\exp \left( {kx} \right) - \exp \left( { - x} \right)} \right) \) which for \( k = 1 \) reduces to the hyperbolic sine is proposed. Two general purpose semiconductor diodes connected in antiparallel are utilized to synthesize the tuneable nonlinearity. The new system presents three rest points among which two unstable ones. Thus, the dynamics is organized around the zero equilibrium point. Correspondingly, the model develops only mono-scroll strange attractors. The numerical analysis of the system reveals some interesting phenomena such as period doubling cascades to chaos, period-doubling reversals, periodic windows, hysteresis, and coexisting bifurcations as well. The presence of parallel bifurcation branches justifies the occurrence of multiple coexisting attractors in some ranges of parameters. Several basins of attraction with extremely complex structures are provided to illustrate the magnetization of the state space due to the presence of numerous competing attractors. The practical implication of this phenomenon is that it might be very difficult to predict the dynamical state of the system. Multistability in the symmetry boundary is studied by using \( k \) as control parameter. A very good agreement is observed between practical experiments and the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos, Solitons Fractals 16:737–747

    Article  MathSciNet  MATH  Google Scholar 

  2. Cushing JM, Henson SM, Blackburn CC (2007) Multiple mixed attractors in a competition model. J Biol Dyn 1:347–362

    Article  MathSciNet  MATH  Google Scholar 

  3. Masoller C (1994) Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys Rev 50:2569–2578

    Article  Google Scholar 

  4. Njitacke ZT, Kengne J, Fotsin HB, Nguomkam NA, Tchiotsop D (2016) Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. Chaos, Solitons Fractals 91:180–197

    Article  MATH  Google Scholar 

  5. Pham VT, Vaidyanathan S, Volos CK, Jafari S, Kuznetsov NV, Hoang TM (2016) A novel memristive timedelay chaotic system without equilibrium points. Eur Phys J Spec Top 225(1):127–136

    Article  Google Scholar 

  6. Hens C, Dana SK, Feudel U (2015) Extreme multistability: attractors manipulation and robustness. Chaos 25:053112

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao BC, Xu B, Bao H, Chen M (2016) Extreme multistability in a memristive circuit. Electron Lett 52(12):1008–1010

    Article  Google Scholar 

  8. Bao B, Jiang T, Xu Q, Chen M, Wu H, Hu Y (2016) Coexisting infinitely many attractors in active bandpass filter-based memristive circuit. Nonlinear Dyn 86(3):1711–1723

    Article  Google Scholar 

  9. Sprott JC (1997) Some simple Jerk functions. Am. J. Phys A. 65:537–543

    Article  Google Scholar 

  10. Sprott JC (1997) Simplest dissipative chaotic flow. Phys Lett A 228:271–274

    Article  MathSciNet  MATH  Google Scholar 

  11. Sprott JC (2000) Simple chaotic systems and circuits. Am J Phys 68:758–763

    Article  Google Scholar 

  12. Sprott JC (2010) Elegant chaos: algebraically simple flow. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  13. Sprott JC (2011) A new chaotic Jerk circuit. IEEE Trans Circuits Syst II Expr Br 58:240–243

    Article  Google Scholar 

  14. Njitacke ZT, Kengne J, Nguomkam NA, Fouodji TM, Fotsin HB (2015) Coexistence of multiple attractors and crisis route to chaos in a novel chaotic Jerk circuit. Int J Bifurcat Chaos 25(4):1550052

    Article  MATH  Google Scholar 

  15. Kengne J, Negou AN, Tchiotsop D (2017) Antimonotonicity chaos and multiple attractors in a novel autonomous memristor-based Jerk circuit. Nonlinear Dyn 88:2589–2608

    Article  Google Scholar 

  16. Parlitz U, Lauterborn W (1985) Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ+ x+ = f cos (ωt). Phys Lett A 107:351–355

    Article  MathSciNet  Google Scholar 

  17. Nguomkam Negou A, Kengne J, Tchiotsop D (2018) Periodicity, chaos and multiple coexisting attractors in a generalized Moore–Spiegel system. Chaos, Solitons Fractals 107:275–289

    Article  MathSciNet  MATH  Google Scholar 

  18. Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous Jerk system with multiple attractors. Nonlinear Dyn 83:751–765

    Article  MathSciNet  Google Scholar 

  19. Kengne J, Nguomkam Negou A, Njitacke ZT (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous Jerk circuit. Int J Bifurcat Chaos 27(7):1750100

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Physica D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  21. Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley, Reading

    Google Scholar 

  22. Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurcat Chaos 21(9):2391–2394

    Article  Google Scholar 

  23. Kuznetsov AP, Kuznetsov SP, Mosekilde E, Stankevich NV (2015) Co-existing hidden attractors in a radio-physical oscillator. J Phys A: Math Theor 48:125101

    Article  MathSciNet  MATH  Google Scholar 

  24. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and antisynchronization of a six-term novel Jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8:24–36

    Article  Google Scholar 

  25. Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous Jerk system with multiple attractors. Nonlinear Dyn 83:751

    Article  MathSciNet  Google Scholar 

  26. Vaidyanathan S, Azar AT (2016) Adaptive backstepping control and synchronization of a novel 3-D Jerk system with an exponential nonlinearity. In: Azar A, Vaidyanathan S (eds) Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing., vol 337. Springer, Cham

    Google Scholar 

  27. Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solit Fract 16:737–747

    Article  MathSciNet  MATH  Google Scholar 

  28. Vaithianathan V, Veijun J (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circutes Syst I 46:405–409

    Article  Google Scholar 

  29. Nguomkam NA, Kengne J (2018) Dynamic analysis of a unique Jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. Int J Electron Commun (AEÜ) 90:1–19

    Article  Google Scholar 

  30. Pivka L, Wu CW, Huang A (1994) Chua’s oscillator: a com- pendium of chaotic phenomena. J Frankl Inst 331B(6):705–741

    Article  MATH  Google Scholar 

  31. Kuznetsov AP, Kuznetsov SP, Mosekilde E, Stankevich NV (2015) Co-existing hidden attractors in a radio-physical oscillator. J Phys A: Math Theor 48:125101

    Article  MathSciNet  MATH  Google Scholar 

  32. Li C, Sprott JC (2013) Amplitude control approach for chaoticsignals. Nonlinear Dyn 73:1335–1341

    Article  MATH  Google Scholar 

  33. Swathy PS, Thamilmaran K (2013) An experimental study on SC-CNN based canonical Chua’s circuit. Nonlinear Dyn 71:505–514

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Mogue Tagne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagne, R.L.M., Kengne, J. & Negou, A.N. Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity. Int. J. Dynam. Control 7, 476–495 (2019). https://doi.org/10.1007/s40435-018-0458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0458-3

Keywords

Navigation