Skip to main content
Log in

Dynamics and control in a novel hyperchaotic system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this work, a novel hyperchaotic system is introduced. The system consists of four coupled continuous-time ordinary differential equations with three quadratic nonlinearities. Based on the center manifold and local bifurcation theorems, the existence of pitchfork bifurcation is proved at the origin equilibrium point of the proposed system. Also, the existence of Hopf bifurcation near all the equilibrium points of the system is shown. Moreover, stability analysis of the resulting periodic solutions is analyzed using Kuznetsov’s theory which determines the analytical conditions for the occurrence of supercritical (subcritical) Hopf bifurcation’s type. Numerical verifications such as Lyapunov exponents’ spectrum, Lyapunov dimension, bifurcation diagrams and the continuation software MATCONT are used to show the rich dynamics of the proposed system and to confirm the analytical results. Finally, the hyperchaotic behaviors in this system are suppressed to its three equilibrium points using a novel control method based on Lyapunov stability approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rössler OE (1979) Continuous chaos—four prototype equations. Ann N Y Acad Sci 316:376–392

    Article  MathSciNet  MATH  Google Scholar 

  2. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MathSciNet  MATH  Google Scholar 

  3. Matsumoto T, Chua LO, Kobayashi K (1986) Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans Circuits Syst 33:1143–1147

    Article  MathSciNet  Google Scholar 

  4. Kapitaniak T, Chua LO, Zhong G-Q (1994) Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans Circuits Syst I(41):499–503

    Article  Google Scholar 

  5. Kapitaniak T, Chua LO (1994) Hyperchaotic attractors of unidirectionally-coupled Chua’s circuit. Int J Bifurcat Chaos 4:477–482

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan A, Tyagi A (2017) Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control 5:1147–1155

    Article  MathSciNet  Google Scholar 

  7. Khan A, Bhat MA (2017) Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int J Dyn Control 5:1211–1221

    Article  MathSciNet  Google Scholar 

  8. Khan A, Kumar S (2017) T–S fuzzy observed based design and synchronization of chaotic and hyper-chaotic dynamical systems. Int J Dyn Control. https://doi.org/10.1007/s40435-017-0358-y

  9. Chen A, Lu J-A, Lü J, Yu S (2006) Generating hyperchaotic Lü attractor via state feedback control. Phys A 364:103–110

    Article  Google Scholar 

  10. Ahmad WM (2006) A simple multi-scroll hyperchaotic system. Chaos Solitons Fractals 27:1213–1219

    Article  MATH  Google Scholar 

  11. Kengne J, Tsotsop MF, Negou AN, Kenne G (2017) On the dynamics of single amplifier biquad based inductor-free hyperchaotic oscillators: a case study. Int J Dyn Control 5:421–435

    Article  MathSciNet  Google Scholar 

  12. Kengne J, Tsotsop MF, Mbe ESK, Fotsin HB, Kenne G (2017) On coexisting bifurcations and hyperchaos in a class of diode-based oscillators: a case study. Int J Dyn Control 5:530–541

    Article  MathSciNet  Google Scholar 

  13. Vincent UE, Nbendjo BRN, Ajayi AA, Njah AN, McClintock PVE (2015) Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit. Int J Dyn Control 3:363–370

    Article  MathSciNet  Google Scholar 

  14. Mahmoud GM, Al-Kashif MA, Farghaly AA (2008) Chaotic and hyperchaotic attractors of a complex nonlinear system. J Phys A Math Theor 41:055104

    Article  MathSciNet  MATH  Google Scholar 

  15. Mahmoud GM, Mahmoud EE, Ahmed ME (2009) On the hyperchaotic complex Lü system. Nonlinear Dyn 58:725–738

    Article  MathSciNet  MATH  Google Scholar 

  16. Matouk AE (2009) Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system. Phys Lett A 373:2166–2173

    Article  MATH  Google Scholar 

  17. Lan Y, Li Q (2010) Chaos synchronization of a new hyperchaotic system. Appl Math Comput 217:2125–2132

    MathSciNet  MATH  Google Scholar 

  18. Mahmoud GM, Mahmoud EE (2010) Synchronization and control of hyperchaotic complex Lorenz system. Nonlinear Dyn 80:2286–2296

    MathSciNet  MATH  Google Scholar 

  19. Chen Z, Yang Y, Qi G, Yuan Z (2007) A novel hyperchaos system only with one equilibrium. Phys Lett A 360:696–701

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen G (2011) Controlling chaotic and hyperchaotic systems via a simple adaptive feedback controller. Comput Math Appl 61:2031–2034

    Article  MathSciNet  MATH  Google Scholar 

  21. Hegazi AS, Matouk AE (2011) Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system. Appl Math Lett 24:1938–1944

    Article  MathSciNet  MATH  Google Scholar 

  22. Torkamani S, Butcher E (2013) Delay, state, and parameter estimation in chaotic and hyperchaotic delayed systems with uncertainty and time-varying delay. Int J Dyn Control 1:135–163

    Article  Google Scholar 

  23. Abedini M, Gomroki M, Salarieh H, Meghdari A (2014) Identification of 4D Lü hyper-chaotic system using identical systems synchronization and fractional adaptation law. Appl Math Model 38:4652–4661

    Article  MathSciNet  MATH  Google Scholar 

  24. Matouk AE, Elsadany AA (2014) Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique. Appl Math Lett 29:30–35

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Sayed AMA, Nour HM, Elsaid A, Matouk AE, Elsonbaty A (2014) Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system. Appl Math Comput 239:333–345

    MathSciNet  MATH  Google Scholar 

  26. Thamilmaran K, Lakshmanan M, Venkatesan A (2004) Hyperchaos in a modified canonical Chua’s circuit. Int J Bifurcat Chaos 14:221–243

    Article  MATH  Google Scholar 

  27. Gao TG, Chen ZQ, Chen G (2006) A hyper-chaos generated from Chen’s system. Int J Mod Phys C 17:471–478

    Article  MATH  Google Scholar 

  28. Matouk AE (2015) On the periodic orbits bifurcating from a fold Hopf bifurcation in two hyperchaotic systems. Optik 126:4890–4895

    Article  Google Scholar 

  29. Zhang L (2017) A novel 4-D butterfly hyperchaotic system. Optik 131:215–220

    Article  Google Scholar 

  30. Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372:394–400

    Article  MATH  Google Scholar 

  31. Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Opt Commun 285:29–37

    Article  Google Scholar 

  32. Garcia-Martinez M, Čelikovsky S (2015) Hyperchaotic encryption based on multi-scroll piecewise linear systems. Appl Math Comput 270:413–424

    MathSciNet  MATH  Google Scholar 

  33. El-Sayed AMA, Elsonbaty A, Elsadany AA, Matouk AE (2016) Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization. Int J Bifurcat Chaos 26:1650222

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin J (2015) Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn 80:209–219

    Article  MathSciNet  Google Scholar 

  35. Smaoui N, Karouma A, Zribi M (2011) Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun Nonlinear Sci Numer Simul 16:3279–3293

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassan MF (2014) A new approach for secure communication using constrained hyperchaotic systems. Appl Math Comput 246:711–730

    MathSciNet  MATH  Google Scholar 

  37. He J, Cai J, Lin J (2016) Synchronization of hyperchaotic systems with multiple unknown parameters and its application in secure communication. Optik 127:2502–2508

    Article  Google Scholar 

  38. Fang J, Deng W, Wu Y, Ding G (2014) A novel hyperchaotic system and its circuit implementation. Optik 125:6305–6311

    Article  Google Scholar 

  39. El-Sayed AMA, Nour HM, Elsaid A, Matouk AE, Elsonbaty A (2016) Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Appl Math Model 40:3516–3534

    Article  MathSciNet  Google Scholar 

  40. Vicente R, Daudén J, Colet P, Toral R (2005) Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to delayed feedback loop. IEEE J Quantum Electron 41:541–548

    Article  Google Scholar 

  41. Pu X, Tian X-J, Zhai H-Y, Qiao L, Liu C-Y, Cui Y-Q (2013) Simulation study on hyperchaos analysis of reforming system based on single-ring erbium-doped fiber laser. J China Univ Posts Telecommun 20:117–121

    Article  Google Scholar 

  42. Haken H (1983) At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys Lett A 94:71–72

    Article  MathSciNet  Google Scholar 

  43. Elabbasy EM, Agiza HN, El-Dessoky MM (2006) Adaptive synchronization of a hyperchaotic system with uncertain parameter. Chaos Solitons Fractals 30:1133–1142

    Article  MathSciNet  MATH  Google Scholar 

  44. Stenflo L (1996) Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Phys Scr 53:83–84

    Article  Google Scholar 

  45. Singh S (2016) Single input sliding mode control for hyperchaotic Lu system with parameter uncertainty. Int J Dyn Control 4:504–514

    Article  MathSciNet  Google Scholar 

  46. Tripathi P, Aneja N, Sharma BK (2018) Stability of dynamical behavior of a new hyper chaotic system in certain range and its hybrid projective synchronization behavior. Int J Dyn Control. https://doi.org/10.1007/s40435-018-0424-0

    Google Scholar 

  47. Singh JP, Roy BK (2018) Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behaviour. Int J Dyn Control. https://doi.org/10.1007/s40435-017-0392-9

    MathSciNet  Google Scholar 

  48. Jafari S, Sprott JC, Molaie M (2016) A simple chaotic flow with a plane of equilibria. Int J Bifurcat Chaos 26:1650098–1650104

    Article  MathSciNet  MATH  Google Scholar 

  49. Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurcat Chaos 21:2391–2394

    Article  Google Scholar 

  50. Hsü ID, Kazarinoff ND (1977) Existence and stability of periodic solutions of a third-order nonlinear autonomous system simulating immune response in animals. Proc R Soc Edinburgh Sect A 77:163–175

    Article  MATH  Google Scholar 

  51. Matouk AE (2008) Dynamical analysis feedback control and synchronization of Liu dynamical system. Nonlinear Anal Theor Methods Appl 69:3213–3224

    Article  MathSciNet  MATH  Google Scholar 

  52. Matouk AE, Agiza HN (2008) Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor. J Math Anal Appl 341:259–269

    Article  MathSciNet  MATH  Google Scholar 

  53. Matouk AE, Elsadany AA (2016) Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dyn 85:1597–1612

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu R, Fang T (2015) Stability and Hopf bifurcation of a Lorenz-like system. Appl Math Comput 262:335–343

    MathSciNet  MATH  Google Scholar 

  55. Elsadany AA, Matouk AE, Abdelwahab AG, Abdallah HS (2018) Dynamical analysis, linear feedback control and synchronization of a generalized Lotka–Volterra system. Int J Dyn Control 6:328–338

    Article  MathSciNet  Google Scholar 

  56. Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    Book  MATH  Google Scholar 

  57. Kuznetsov YA (1998) Elements of applied bifurcation theory, 2nd edn. Springer, New York

    MATH  Google Scholar 

  58. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–287

    Article  MathSciNet  MATH  Google Scholar 

  59. Kaplan J, Yorke J (1979) Chaotic behavior of multidimensional difference equations. Lecture notes in mathematics. Springer, p 730

Download references

Acknowledgements

This work is supported by Deanship of Scientific Research at Majmaah University. The author thanks the anonymous reviewers for providing some helpful comments which improve the style, readability and clarity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Matouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matouk, A.E. Dynamics and control in a novel hyperchaotic system. Int. J. Dynam. Control 7, 241–255 (2019). https://doi.org/10.1007/s40435-018-0439-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0439-6

Keywords

Navigation