Skip to main content
Log in

Local non-integer order dynamic problems on time scales revisited

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper deals with a non-integer order calculus on time scales in a local sense. Taking advantage of a new field structure over real and complex numbers, the researchers have normalized the proposed derivative. Non-integer order mean value theorem on time scales is stated. In addition to a hypothesis on the existence of a H\( \ddot{o} \)lder continuous function h, a given time scale \( \mathbb {T} \) is explored. This consideration provided an extension to a recently proposed local fractional differentiation theory and it paved the ground to a local fractional integration on time scales. Also, making use of the presented non-integer order calculus, a class of dynamic initial value problems of fractional orders on an arbitrary time scale is studied. Eventually, an approximate solution to the potential-free Schrdinger equation of time-fractional order is obtained and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bohner M, Peterson AC (eds) (2002) Advances in dynamic equations on time scales. Springer, Berlin

    Google Scholar 

  2. Bohner M, Peterson A (2012) Dynamic equations on time scales: an introduction with applications. Springer, Berlin

    MATH  Google Scholar 

  3. Hilger S (1997) Differential and difference calculusunified!. Nonlinear Anal Theory Methods Appl 30(5):2683–2694

    Article  MathSciNet  MATH  Google Scholar 

  4. Hilger S (1990) Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math 18(1–2):18–56

    Article  MathSciNet  MATH  Google Scholar 

  5. Bastos NR (2012) Fractional calculus on time scales. PhD thesis, Universidade de Aveiro

  6. Williams PA (2012) Unifying fractional calculus with time scales. PhD thesis, University of Melbourne

  7. Benkhettou N, da Cruz AMB, Torres DF (2015) A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Sig Process 107:230–237

    Article  Google Scholar 

  8. Neamaty A, Nategh M, Agheli B (2017) Time–space fractional Burger’s equation on time scales. J Comput Nonlinear Dyn 12(3):031022

    Article  Google Scholar 

  9. Albrecht-Buehler G (2012) Fractal genome sequences. Gene 498(1):20–27

    Article  Google Scholar 

  10. Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos Solitons Fractals 6:171–201

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen W (2006) Timespace fabric underlying anomalous diffusion. Chaos Solitons Fractals 28(4):923–929

    Article  MATH  Google Scholar 

  12. Golmankhaneh AK, Baleanu D (2016) Fractal calculus involving gauge function. Commun Nonlinear Sci Numer Simul 37:125–130

    Article  MathSciNet  Google Scholar 

  13. Liang Y, Allen QY, Chen W, Gatto RG, Colon-Perez L, Mareci TH, Magin RL (2016) A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Commun Nonlinear Sci Numer Simul 39:529–537

    Article  MathSciNet  Google Scholar 

  14. Yang XJ, Baleanu D, Srivastava HM (2015) Local fractional integral transforms and their application. Elsevier, Amsterdam

    Google Scholar 

  15. Yang XJ, Machado JT, Cattani C, Gao F (2017) On a fractal LC-electric circuit modeled by local fractional calculus. Commun Nonlinear Sci Numer Simul 47:200–206

    Article  Google Scholar 

  16. Fan J, He J (2012) Fractal derivative model for air permeability in hierarchic porous media. Abstr appl anal 2012:7. doi:10.1155/2012/354701

  17. He JH (2011) A new fractal derivation. Therm Sci 15:S145–S147

  18. Zhang LZ (2008) A fractal model for gas permeation through porous membranes. Int J Heat Mass Transf 51(21):5288–5295

    Article  MATH  Google Scholar 

  19. Hinz M, Teplyaev A (2013) Dirac and magnetic Schrdinger operators on fractals. J Funct Anal 265(11):2830–2854

    Article  MathSciNet  MATH  Google Scholar 

  20. Cappellaro P (2012) Introduction to applied nuclear physics, MIT Course Number 22.02. MIT OpenCourseWare, Spring semester

  21. Huseynov A (2010) Eigenfunction expansion associated with the one-dimensional Schrdinger equation on semi-infinite time scale intervals. Rep Math Phys 66(2):207–235

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Agheli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neamaty, A., Nategh, M. & Agheli, B. Local non-integer order dynamic problems on time scales revisited. Int. J. Dynam. Control 6, 486–498 (2018). https://doi.org/10.1007/s40435-017-0322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0322-x

Keywords

Mathematics Subject Classification

Navigation