Skip to main content
Log in

Methods for temperature estimation and monitoring of permanent magnet: a technology review and future trends

  • Review Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The permanent magnet is subject to high-temperature demagnetization under high-torque or high-speed operating conditions. Accurate estimation of the temperature of the permanent magnets allows for better improvement of the cooling system, such as flow distribution and structural optimization. It is also the object of research in tracking and monitoring technology, because timely sensing of the temperature of the permanent magnet is the key to generate thermal protection mechanisms for the cooling system and active thermal protection system. In recent years, techniques for estimating and monitoring the temperature of permanent magnet have evolved, and a large body of valuable literature has been generated in the process. Therefore, this paper discusses this literature by systematically categorizing it into estimation and monitoring techniques in order to promote more researchers to understand the advantages of various methods and rationally choose the research topics they are most interested in. In addition, trends and challenges in various research directions were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AO:

Adaptive observer

APA:

Affine Projection Algorithms

AMSC:

Amorphous metal stator core

ANN:

Artificial neural network

BA:

Bayesian algorithm

BEMF:

Back electromotive force

CFD:

Computational fluid dynamics

CHT:

Conjugate heat transfer

CNN:

Convolutional neural network

DC:

Direct current

DDM:

Data-driven models

DFIM:

Doubly fed induction motors

DFNN:

Difference-estimating FNN

DTFC:

Direct torque and flux control

EKF:

Extended Kalman filter

EMI:

Electromagnetic interference

EM-PF:

Expectation maximization particle filter

ET:

Extremely randomized trees

EV:

Electric vehicle

FCS-MPCC:

Finite control set model predictive current control

FEA:

Finite element analysis

FNN:

Feedforward neural network

GA:

Genetic algorithm

HF:

High frequency

HFS:

High-frequency signal

HT:

Heat transfer

KF:

Kalman filter

KNN:

K-Nearest neighbor

LPTN:

Lumped parameter thermal network

LPV:

Linear parameter varying

LTI:

Linear time invariant

MILS:

Multi-innovation least squares

MIT:

Massachusetts Institute of Technology

MRAS:

Model-reference adaptive system

MLP:

Multi-layer perceptron

NAC:

Nonlinear adaptive control

NARX:

Nonlinear auto-regressive model with exogenous inputs

OLS:

Ordinary least square

PMSM:

Permanent magnet synchronous motor

PSO:

Particle swarm algorithm

PWM:

Pulse-width modulation

RBF:

Radial basis function

RF:

Random forest

RLS:

Recursive least squares

SMC:

Structural control method

SMILE:

State-space Model Interpolation of Local Estimates

SMO:

Sliding mode observer

SVR:

Support vector machine

TA:

Thermal analysis

TTL:

Transistor–transistor logic

USART:

Universal synchronous/asynchronous receiver/transmitter

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Lee JG, Lim DK (2021) A stepwise optimal design applied to an interior permanent magnet synchronous motor for electric vehicle traction applications. IEEE Access 9:115090–115099

    Google Scholar 

  2. Du C, Peng Z et al (2020) Advanced rotor temperature estimation of permanent magnet synchronous machines for electric vehicles. Adv Mech Eng 12(6):1–11

    Google Scholar 

  3. Bdewi MY, Mohammed AM, Ezzaldean MM (2021) Design and performance analysis of permanent magnet synchronous motor for electric vehicles application. Eng Technol J 39(03 Part A):394–406

    Google Scholar 

  4. Sun Y, Zhang S, Chen G et al (2020) Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors. Appl Therm Eng 170:114970

    Google Scholar 

  5. Wang H, Zhang C, Guo L et al (2023) Temperature field calculation of the hybrid heat pipe cooled permanent magnet synchronous motor for electric vehicles based on equivalent thermal network method. World Electr Veh J 14(6):141

    Google Scholar 

  6. Jing H, Chen Z, Wang X et al (2023) Gradient boosting decision tree for rotor temperature estimation in permanent magnet synchronous motors. IEEE Trans Power Electron 38:10617–10622

    Google Scholar 

  7. Kang M, Wang H, Guo L et al (2020) Self-circulation cooling structure design of permanent magnet machines for electric vehicle. Appl Therm Eng 165:114593

    Google Scholar 

  8. Rasid MAH, Zulkafli MNA, Nafiz DM (2022) Evaluation of DC machine armature winding temperature estimation using temperature measured on brush and bearing. In: 2022 IEEE 1st industrial electronics society annual on-line conference (ONCON). IEEE, pp 1–6

  9. Sun T, Yang R et al (2020) Active motor rotor temperature management based on one-node thermal network model predictive control. IEEE Trans Power Electron 35(10):11213–11221

    Google Scholar 

  10. Al-Gabalawy M, Elmetwaly AH, Younis RA et al (2022) Temperature prediction for electric vehicles of permanent magnet synchronous motor using robust machine learning tools. J Ambient Intell Humaniz Comput, 1–18

  11. Liu L, Guo Y, Yin W et al (2022) Design and optimization technologies of permanent magnet machines and drive systems based on digital twin model. Energies 15(17):6186

    Google Scholar 

  12. Song BK, Chin JW, Kim DM et al (2021) Temperature estimation using lumped-parameter thermal network with piecewise stator-housing modules for fault-tolerant brake systems in highly automated driving vehicles. IEEE Trans Intell Transp Syst 22(9):5819–5832

    Google Scholar 

  13. Sarcheshmeh SF, Asmussen SE, Koenig N et al (2022) Real-time AI-based temperature estimation of small electric drives. In: IKMT 2022; 13. GMM/ETG-symposium. VDE, pp 1–6

  14. Hughes R, Pei X, Haidinger T et al (2023) Real-time temperature prediction of electric machines using machine learning with physically informed features. Energy AI 14:100288

    Google Scholar 

  15. Nikbakhsh A, Izadfar H, Jazaeri M (2019) Classification and comparison of rotor temperature estimation methods of squirrel cage induction motors. Measurement 145:779–802

    Google Scholar 

  16. Song T, Liu H, Zhang Q et al (2020) Multi-physics and multi-objective optimisation design of interior permanent magnet synchronous motor for electric vehicles. IET Electr Power Appl 14(11):2243–2254

    Google Scholar 

  17. Zhao J, Zhou L, Wang J et al (2018) Design and optimization of water cooling system for high power density permanent magnet motor based on multi-physics field simulation. In: 2018 IEEE student conference on electric machines and systems. IEEE, pp 1–5

  18. McDonagh J, Palumbo N, Cherukunnath N et al (2022) Modelling a permanent magnet synchronous motor in FEniCSx for parallel high-performance simulations. Finite Elem Anal Des 204:103755

    MathSciNet  Google Scholar 

  19. Yan B, Li X, Wang X et al (2022) Magnetic field prediction for line-start permanent magnet synchronous motor via incorporating geometry approximation and finite difference method into subdomain model. IEEE Trans Industr Electron 70(3):2843–2854

    Google Scholar 

  20. Roy P, Towhidi M, Ahmed F et al (2020) A novel hybrid technique for thermal analysis of permanent magnet synchronous motor used in electric vehicle application. SAE Technical Paper

  21. Jung H, Park D et al (2019) Non-invasive magnet temperature estimation of IPMSM based on high-frequency inductance with a pulsating high-frequency voltage signal injection. IEEE Trans Ind Appl 55(3):3076–3086

    Google Scholar 

  22. Wallscheid O, Specht A, Böcker J (2017) Observing the permanent-magnet temperature of synchronous motors based on electrical fundamental wave model quantities. IEEE Trans Industr Electron 64(5):3921–3929

    Google Scholar 

  23. Cheng A, Xin Y, Wu H et al (2023) A review of sensor applications in electric vehicle thermal management systems. Energies 16(13):5139

    Google Scholar 

  24. Bian Y, Wen X, Fan T et al (2023) Data-driven-model-based full-region optimal mapping method of permanent magnet synchronous motors in wide temperature range. Machines 11(3):324

    Google Scholar 

  25. Huang K, Peng W, Lai C et al (2022) Efficient maximum torque per ampere (MTPA) control of interior PMSM using sparse bayesian based offline data-driven model with online magnet temperature compensation. IEEE Trans Power Electron 38(4):5192–5203

    Google Scholar 

  26. Li Z, Chen D, Chen Y et al (2021) PMSM parameter identification based on improved PSO. In: Journal of Physics: Conference Series, vol 1754, no 1. IOP Publishing, p 012235

  27. Yousri D, Allam D, Eteiba MB et al (2020) Chaotic heterogeneous comprehensive learning particle swarm optimizer variants for permanent magnet synchronous motor models parameters estimation. Iran J Sci Technol Trans Electr Eng 44:1299–1318

    Google Scholar 

  28. Mejuto C, Mueller M, Shanel M, Shanel A, Shanel M, Shanel D (2008) Improved synchronous machine thermal modelling. In: International conference on electrical machines, ICEM. pp 1–6

  29. Martiny W, McCoy R, Margolis H (1961) Thermal relationships in an induction motor under normal and abnormal operation. Power apparatus and system, Part III. Trans Am Inst Electr Eng 80:66–76

    Google Scholar 

  30. Hou Z, Gu G (2008) Wireless rotor temperature measurement system based on MSP430 and nRF401. In: International conference on electrical machines and systems, ICEMS 2008. pp 858–861

  31. Jianzhong G, Hui G, Zhe H (2009) Rotor temperature monitoring technology of direct-drive permanent magnet wind turbine. In: International conference on electrical machines and systems, ICEMS. pp 1–4

  32. Yahoui H, Grellet G (1996) Measurement of physical signals in rotating part of electrical machine by means of optical fibre transmission. Instrumentation and Measurement technology Conference 1996, IMTC-96. pp 591–596

  33. Hafezi H, Jalilian A (2006) Design and construction of induction motor thermal monitoring system. In: Universities power engineering conference, vol 2. pp 674–678

  34. Kovačić M, Vražić M, Gašparac I (2010) Bluetooth wireless communication and 1-wire digital temperature sensors in synchronous machine rotor temperature measurement. In: Proceedings of 14th international power electronics and motion control conference EPE-PEMC 2010. IEEE, pp T7–25

  35. Ganchev M, Kubicek B, Kappeler H (2010) Rotor temperature monitoring system. In: The XIX international conference on electrical machines-ICEM 2010. IEEE, pp 1–5

  36. Fernandez D, Reigosa D, Tanimoto T et al (2015) Wireless permanent magnet temperature & field distribution measurement system for IPMSMs. In: 2015 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 3996–4003

  37. Ganchev M, Kral C, Wolbank TM (2013) Compensation of speed dependence in sensorless rotor temperature estimation for permanent-magnet synchronous motor. IEEE Trans Ind Appl 49(6):2487–2495

    Google Scholar 

  38. Stipetic S, Kovacic M, Hanic Z et al (2011) Measurement of excitation winding temperature on synchronous generator in rotation using infrared thermography. IEEE Trans Ind Electron 59(5):2288–2298

    Google Scholar 

  39. Reigosa DD, Briz F, García P et al (2010) Magnet temperature estimation in surface PM machines using high-frequency signal injection. IEEE Trans Ind Appl 46(4):1468–1475

    Google Scholar 

  40. Khalesidoost S, Faiz J, Mazaheri-Tehrani E (2022) An overview of thermal modelling techniques for permanent magnet machines. IET Sci Meas Technol 16(4):219–241

    Google Scholar 

  41. Demetriades GD, De La Parra HZ, Andersson E et al (2009) A real-time thermal model of a permanent-magnet synchronous motor. IEEE Trans Power Electron 25(2):463–474

    Google Scholar 

  42. Li D, Feng G, Li W et al (2023) Irreversible demagnetization of a large capacity line-start permanent magnet synchronous motors considering influence of permanent magnet temperature. Int Trans Electr Energy Syst 2023

  43. Kim BC, Lee JH, Kang DW (2020) A study on the effect of eddy current loss and demagnetization characteristics of magnet division. IEEE Trans Appl Supercond 30(4):1–5

    Google Scholar 

  44. Yu W, Hua W, Qi J et al (2020) Coupled magnetic field-thermal network analysis of modular-spoke-type permanent-magnet machine for electric motorcycle. IEEE Trans Energy Convers 36(1):120–130

    Google Scholar 

  45. Drancă M, Chirca M, Breban Ş et al (2020) Thermal and demagnetization analysis of an axial-flux permanent magnet synchronous machine. In: 2020 International conference and exposition on electrical and power engineering (EPE). IEEE, pp 200–204

  46. Jung JW, Lee BH, Kim KS et al (2020) Interior permanent magnet synchronous motor design for eddy current loss reduction in permanent magnets to prevent irreversible demagnetization. Energies 13(19):5082

    Google Scholar 

  47. Nithiarasu P, Lewis RW, Seetharamu KN (2016) Fundamentals of the finite element method for heat and mass transfer. John Wiley & Sons, Hoboken

    Google Scholar 

  48. Jung JY, Lee H, Chen MM (2004) Simple, accurate treatment of curved boundaries with dirichlet and neumann conditions. Numer Heat Transf Part B Fundam 45(5):421–448

    Google Scholar 

  49. Boglietti A, Cavagnino A, Staton D et al (2009) Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans Ind Electron 56(3):871–882

    Google Scholar 

  50. Si J, Zhao S, Feng H et al (2018) Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method. CES Trans Electr Mach Syst 2(1):166–174

    Google Scholar 

  51. Liu C, Zou J, Xu Y et al (2021) An efficient thermal computation model of PMSM based on FEA results and interpolation. IEEE Trans Appl Supercond 31(8):1–4

    Google Scholar 

  52. Kuria J, Hwang P (2012) Investigation of thermal performance of electric vehicle BLDC motor. Int J Mech Eng 1(1):1–17

    Google Scholar 

  53. Hong DK, Jeong YH (2019) Multiphysics analysis of a high speed PMSM for electric turbo charger. Int J Appl Electromagnet Mech 59(3):835–843

    Google Scholar 

  54. Kong C, Wang S (2019) Temperature rise analysis of high power density permanent magnet motor based on fluid-solid coupling. In: 2019 IEEE 3rd international electrical and energy conference (CIEEC). IEEE, pp 910–914

  55. Liu X, Yu H, Shi Z et al (2018) Electromagnetic-fluid-thermal field calculation and analysis of a permanent magnet linear motor. Appl Therm Eng 129:802–811

    Google Scholar 

  56. Wan Y, Wu S, Cui S (2016) Choice of pole spacer materials for a high-speed PMSM based on the temperature rise and thermal stress. IEEE Trans Appl Supercond 26(7):1–5

    Google Scholar 

  57. Li L, Zhu G (2023) Electromagnetic-thermal-stress efforts of stator-casing grease buffers for permanent magnet driving motors. IEEE Trans Ind Appl

  58. Pu X, Yuan B, Yin Y et al (2022) Temperature rise calculation of oil-cooled in-wheel pmsm based on two-phase fluid-solid coupling model. In: Annual conference of china electrotechnical society. Springer Nature Singapore, Singapore, pp 973–981

  59. Zhang X, Zhang H, Li W et al (2019) Thermal barrier for high-voltage permanent magnet synchronous motor with air-cooling hybrid ventilation systems. In: 2019 22nd international conference on electrical machines and systems (ICEMS). IEEE, pp 1–4

  60. Zhu G, Liu X, Li L et al (2019) Cooling system design of a high-speed PMSM based on a coupled fluidic–thermal model. IEEE Trans Appl Supercond 29(2):1–5

    Google Scholar 

  61. Shen S, Ding S, Chen S et al (2021) Research on flow and thermal coupling calculation of high-speed permanent magnet synchronous motor. In: 2021 IEEE 12th energy conversion congress & exposition-asia (ECCE-Asia). IEEE, pp 210–214

  62. Ren Y, Zhao W, Diao C et al (2022) Electromagnetic-thermal coupling analysis of concentrated-flux permanent magnet synchronous motor with auxiliary stator. In: 2022 25th international conference on electrical machines and systems (ICEMS). IEEE, pp 1–5

  63. Tikadar A, Kumar N, Joshi Y et al (2020) Coupled electro-thermal analysis of permanent magnet synchronous motor for electric vehicles. In: 2020 19th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 249–256

  64. Chin JW, Hwang SW, Park HJ et al (2018) Thermal analysis and verification of PMSM using LPTN considering mechanical components and losses. In: 2018 XIII international conference on electrical machines (ICEM). IEEE, pp 1323–1329

  65. Ai Q, Wei H, Dou H et al (2023) Robust rotor temperature estimation of permanent magnet motors for electric vehicles. IEEE Trans Veh Technol

  66. Wang E, Grabherr P, Wieske P et al (2022) A low-order lumped parameter thermal network of electrically excited synchronous motor for critical temperature estimation. In: 2022 International conference on electrical machines (ICEM). IEEE, pp 1562–1568

  67. Dong T, Zhang X, Zhu C et al (2020) Improved thermal modeling methodology for embedded real-time thermal management system of automotive electric machines. IEEE Trans Ind Inf 17(7):4702–4713

    Google Scholar 

  68. Abubakar U, Wang X, Shah SH et al (2023) Coupled electromagnetic–LPTN analysis under steady and transient overload condition of high-speed PMSM for mechanical vapor recompression applications. Iran J Sci Technol Trans Electr Eng 47(2):659–676

    Google Scholar 

  69. Wallscheid O (2021) Thermal monitoring of electric motors: state-of-the-art review and future challenges. IEEE Open J Ind Appl 2:204–223

    Google Scholar 

  70. Abubakar U, Wang X, Shah SH et al (2022) Coupled electromagnetic-LPTN model of high speed PMSM for mechanical vapor recompression applications. In: 2022 25th international conference on electrical machines and systems (ICEMS). IEEE, pp 1–6

  71. Zhiyong L, Xuehuan W, Linhong C (2016) Thermal analysis of PMSM based on lumped parameter thermal network method. In: 2016 19th international conference on electrical machines and systems (ICEMS). IEEE, pp 1–5

  72. Sciascera C, Giangrande P, Papini L et al (2017) Analytical thermal model for fast stator winding temperature prediction. IEEE Trans Ind Electron 64(8):6116–6126

    Google Scholar 

  73. Grobler AJ, Holm SR, Van Schoor G (2018) Empirical parameter identification for a hybrid thermal model of a high-speed permanent magnet synchronous machine. IEEE Trans Ind Electron 65(2):616–1625

    Google Scholar 

  74. Zhu Y, Xiao M, Lu K et al (2019) A simplified thermal model and online temperature estimation method of permanent magnet synchronous motors. Appl Sci 9(15):3158

    Google Scholar 

  75. Huber T, Peters W, Böcker J (2014) Monitoring critical temperatures in permanent magnet synchronous motors using low-order thermal models. In: 2014 International power electronics conference (IPEC-Hiroshima 2014-ECCE ASIA). IEEE, pp 1508–1515

  76. Kral C, Haumer A, Lee SB (2013) A practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans Power Electron 29(1):455–464

    Google Scholar 

  77. Winkler A, Frey J, Fahrbach T et al (2021) Embedded real-time nonlinear model predictive control for the thermal torque derating of an electric vehicle. IFAC-PapersOnLine 54(6):359–364

    Google Scholar 

  78. Zhang Y, Ma T, Yang Y et al (2022) Rotor temperature monitoring and torque correction for IPMSM of new energy vehicle. SAE Technical Paper

  79. Xiao S, Griffo A (2020) Online thermal parameter identification for permanent magnet synchronous machines. IET Electr Power Appl 14(12):2340–2347

    Google Scholar 

  80. Wallscheid O, Böcker J (2015) Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors. IEEE Trans Energy Convers 31(1):354–365

    Google Scholar 

  81. Gedlu EG, Wallscheid O, Böcker J (2020) Permanent magnet synchronous machine temperature estimation using low-order lumped-parameter thermal network with extended iron loss model. In: The 10th international conference on power electronics, machines and drives (PEMD 2020), vol 2020. IET, pp 937–942

  82. Gedlu EG, Wallscheid O, Böcker J (2021) Temperature estimation of electric machines using a hybrid model of feed-forward neural and low-order lumped-parameter thermal networks. In: 2021 IEEE international electric machines & drives conference (IEMDC). IEEE, pp 1–8

  83. Shi W, Luo K, Zhang Z (2023) Online estimation of permanent magnet motor temperature based on thermal network method. Trans China Electrotech Soc 38(10):2686–2697 (in Chinese)

    Google Scholar 

  84. Wöckinger D, Bramerdorfer G, Drexler S et al (2020) Measurement-based optimization of thermal networks for temperature monitoring of outer rotor PM machines. In: 2020 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 4261–4268

  85. Ghahfarokhi PS. Kallaste A, Vaimann T, Rassolkin A, Belahcen A (2018) Steady-state thermal model of a synchronous reluctance motor

  86. Cao L, Fan X, Li D et al (2022) Improved LPTN-based online temperature prediction of permanent magnet machines by global parameter identification. IEEE Trans Ind Electron 70(9):8830–8841

    Google Scholar 

  87. Ghahfarokhi PS, Belahcen A, Kallaste A et al (2018) Thermal analysis of a SynRM using a thermal network and a hybrid model. In: 2018 XIII international conference on electrical machines (ICEM). IEEE, pp 2682–2688

  88. Filusch D, Stapff B, Herzog HG et al (2022) Investigation of an analytical method for the dynamical thermal behavior of electrical machines. In: 2022 International conference on electrical machines (ICEM). IEEE, pp 518–523

  89. Ghahfarokhi PS, Kallaste A, Podgornovs A et al (2020) Development of analytical thermal analysis tool for synchronous reluctance motors. IET Electr Power Appl 14(10):1828–1836

    Google Scholar 

  90. Gaona D, Wallscheid O, Böcker J (2017) Glocal identification methods for low-order lumped parameter thermal networks used in permanent magnet synchronous motors. In: 2017 IEEE 12th international conference on power electronics and drive systems (PEDS). IEEE, pp 1126–1134

  91. Ghosh D, Bombois X, Huillery J et al (2018) Optimal identification experiment design for LPV systems using the local approach. Automatica 87:258–266

    MathSciNet  Google Scholar 

  92. Casella F, Lovera M (2008) LPV/LFT modelling and identification: overview, synergies and a case study. In: 2008 IEEE international conference on computer-aided control systems. IEEE, pp 852–857

  93. Rafaq MS, Jung JW (2019) A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range. IEEE Trans Ind Inf 16(7):4747–4758

    Google Scholar 

  94. Xiao S, Griffo A (2019) PWM-based flux linkage and rotor temperature estimations for permanent magnet synchronous machines. IEEE Trans Power Electron 35(6):6061–6069

    Google Scholar 

  95. Jung HS, Kim H, Sul SK et al (2020) Temperature estimation of IPMSM by using fundamental reactive energy considering variation of inductances. IEEE Trans Power Electron 36(5):5771–5783

    Google Scholar 

  96. Meng T, Zhang P (2023) An online rotor flux estimation technique based on intermittent stator de-energization for rotor temperature estimation of permanent magnet machines. IEEE Trans Power Electron 38(6):7697–7710

    Google Scholar 

  97. Reigosa DD, Briz F, Degner MW et al (2012) Magnet temperature estimation in surface PM machines during six-step operation. IEEE Trans Ind Appl 48(6):2353–2361

    Google Scholar 

  98. Reigosa DD, Fernandez D, Tanimoto T et al (2016) Permanent-magnet temperature distribution estimation in permanent-magnet synchronous machines using back electromotive force harmonics. IEEE Trans Ind Appl 52(4):3093–3103

    Google Scholar 

  99. Feng G, Lai C, Tjong J et al (2018) Noninvasive Kalman filter based permanent magnet temperature estimation for permanent magnet synchronous machines. IEEE Trans Power Electron 33(12):10673–10682

    Google Scholar 

  100. Feng G, Lai C, Li W et al (2019) Efficient permanent magnet temperature modeling and estimation for dual three-phase PMSM considering inverter nonlinearity. IEEE Trans Power Electron 35(7):7328–7340

    Google Scholar 

  101. Fernandez D, Hyun D, Park Y et al (2017) Permanent magnet temperature estimation in PM synchronous motors using low-cost hall effect sensors. IEEE Trans Ind Appl 53(5):4515–4525

    Google Scholar 

  102. Feng G, Lai C, Kar NC (2018) Speed harmonic based modeling and estimation of permanent magnet temperature for PMSM drive using Kalman filter. IEEE Trans Ind Inf 15(3):1372–1382

    Google Scholar 

  103. Dang DQ, Rafaq MS, Choi HH et al (2015) Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives. IEEE Trans Ind Electron 63(3):1438–1449

    Google Scholar 

  104. Reigosa D, Fernandez D, Yoshida H et al (2014) Permanent magnet temperature estimation in PMSMs using pulsating high frequency current injection. In: 2014 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 5198–5205

  105. Meng T, Zhang P (2021) A review of thermal monitoring techniques for radial permanent magnet machines. Machines 10(1):18

    Google Scholar 

  106. Reigosa D, Fernandez D, Tanimoto T et al (2016) Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs. IEEE Trans Power Electron 32(5):3691–3699

    Google Scholar 

  107. Reigosa DD, Fernandez D, Yoshida H et al (2015) Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection. IEEE Trans Ind Appl 51(4):3159–3168

    Google Scholar 

  108. Reigosa D, Garcia P, Briz F et al (2008) Modeling and adaptive decoupling of transient resistance and temperature effects in carrier-based sensorless control of PM synchronous machines. In: 2008 IEEE industry applications society annual meeting. IEEE, pp 1–8

  109. Reigosa DD, Guerrero JM, Diez AB et al (2017) Rotor temperature estimation in doubly-fed induction machines using rotating high-frequency signal injection. IEEE Trans Ind Appl 53(4):3652–3662

    Google Scholar 

  110. Feng G, Lai C, Kar NC (2016) Expectation-maximization particle-filter-and Kalman-filter-based permanent magnet temperature estimation for PMSM condition monitoring using high-frequency signal injection. IEEE Trans Ind Inf 13(3):1261–1270

    Google Scholar 

  111. Feng G, Lai C, Iyer KLV et al (2017) Improved high-frequency voltage injection based permanent magnet temperature estimation for PMSM condition monitoring for EV applications. IEEE Trans Veh Technol 67(1):216–225

    Google Scholar 

  112. Reigosa D, Fernández D, Martínez M et al (2019) Magnet temperature estimation in permanent magnet synchronous machines using the high frequency inductance. IEEE Trans Ind Appl 55(3):2750–2757

    Google Scholar 

  113. Kang YG, Reigosa D, Sarlioglu B et al (2020) D-and Q-axis inductance estimation and self-sensing condition monitoring using 45° angle high-frequency injection. IEEE Trans Ind Appl 57(1):506–515

    Google Scholar 

  114. Kim H, Jung HS, Sul SK (2022) Stator winding temperature and magnet temperature estimation of IPMSM based on high-frequency voltage signal injection. IEEE Trans Ind Electron 70(3):2296–2306

    Google Scholar 

  115. Jung HS, Kim H, Sul SK et al (2020) Magnet temperature estimation of traction motor in standstill with considering spatial harmonics. IEEE Trans Industr Electron 68(11):10546–10557

    Google Scholar 

  116. Czerwinski D, Gęca J, Kolano K (2021) Machine learning for sensorless temperature estimation of a BLDC motor. Sensors 21(14):4655

    Google Scholar 

  117. Kirchgässner W, Wallscheid O, Böcker J (2021) Data-driven permanent magnet temperature estimation in synchronous motors with supervised machine learning: a benchmark. IEEE Trans Energy Convers 36(3):2059–2067

    Google Scholar 

  118. Lakshmi K, Mahaboob B, Rajaiah M et al (2021) Ordinary least squares estimation of parameters of linear model. J Math Comput Sci 11(2):2015–2030

    Google Scholar 

  119. Huang H, Wei X, Zhou Y (2022) An overview on twin support vector regression. Neurocomputing 490:80–92

    Google Scholar 

  120. Xiong L, Yao Y (2021) Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Build Environ 202:108026

    Google Scholar 

  121. Genuer R, Poggi JM, Genuer R et al (2020) Random forests. Springer International Publishing, Berlin

    Google Scholar 

  122. Yang GR, Wang XJ (2020) Artificial neural networks for neuroscientists: a primer. Neuron 107(6):1048–1070

    Google Scholar 

  123. Wallscheid O, Kirchgässner W, Böcker J (2017) Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors. In: 2017 International joint conference on neural networks (IJCNN). IEEE, pp 1940–1947

  124. Le R, He K, Hu A (2019) Motor temperature prediction with K-nearest neighbors and convolutional neural network. Int Res J Eng Technol

  125. Lee J, Ha JI (2020) Temperature estimation of PMSM using a difference-estimating feedforward neural network. IEEE Access 8:130855–130865

    Google Scholar 

  126. Kirchgässner W, Wallscheid O, Böcker J (2020) Estimating electric motor temperatures with deep residual machine learning. IEEE Trans Power Electron 36(7):7480–7488

    Google Scholar 

  127. Anuforo K (2020) Temperature estimation in permanent magnet synchronous motor (PMSM) components using machine learnin. Dublin, National College of Ireland

  128. Soprun O, Bublyk M, Matseliukh Y et al (2020) Forecasting temperatures of a synchronous motor with permanent magnets using machine learning. In: MoMLeT+DS. pp 95–120

  129. Kirchgässner W, Wallscheid O, Böcker J (2019) Deep residual convolutional and recurrent neural networks for temperature estimation in permanent magnet synchronous motors. In: 2019 IEEE international electric machines & drives conference (IEMDC). IEEE, pp 1439–1446

  130. Guo H, Ding Q, Song Y et al (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network. Energies 13(18):4782

    Google Scholar 

  131. Baba S, Zelechowski M, Jasinski M (2019) Estimation of thermal network models parameters based on particle swarm optimization algorithm. In: 2019 IEEE 13th international conference on compatibility, power electronics and power engineering (CPE-POWERENG). IEEE, pp 1–6

  132. Wrobel R (2022) Particle swarm optimization with varied social network for reliable parameter estimation in thermal analysis of electrical machines. IEEE Trans Magn 58(9):1–4

    Google Scholar 

  133. Cheng Y, Zhao M, Liu Q (2020) Online parameter identification of PMSM based on LAWPSO. In: 2020 IEEE 4th information technology, networking, electronic and automation control conference (ITNEC), vol 1. IEEE, pp 2188–2192

  134. Yu W, Liang H, Dong X et al (2020) Modeling and identification of permanent magnet synchronous motor via deterministic learning. IEEE Access 8:168516–168525

    Google Scholar 

  135. Shao D, Huang Y (2020) Parameter identification of permanent magnet synchronous motor based on multi-innovation least square method. In: 2020 IEEE 9th Joint international information technology and artificial intelligence conference (ITAIC), vol 9. IEEE, pp 1810–1814

Download references

Funding

This work was supported by the Natural Science Foundation of Chongqing (Grant No.:cstc2021jcyj-msxmX0440); the youth project of science and technology research program of Chongqing Education Commission of China (No.:KJQN202301167); the Chongqing Graduate Education Teaching Reform Research Project (No.:YJG233120); and the Special Major Project of Technological Innovation and Application Development of Chongqing (No.:CSTB2022TIAD-STX0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Conflicting of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Technical Editor: Guilherme Ribeiro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Feng, Y., Zhang, Y. et al. Methods for temperature estimation and monitoring of permanent magnet: a technology review and future trends. J Braz. Soc. Mech. Sci. Eng. 46, 174 (2024). https://doi.org/10.1007/s40430-024-04723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04723-2

Keywords

Navigation