Skip to main content

Advertisement

Log in

Health diagnosis of permanent magnets under different cooling system effectiveness in high-speed permanent magnet motors for electric vehicles

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The power density of a high-speed permanent magnet (PM) motor is high, and the heat dissipation of its rotor is poor due to limited installation space. Th0000000000000000000us, the temperature of the permanent magnets is high. Once the cooling system of a motor becomes ineffective and the rotor temperature exceeds the limit temperature of the PM material, a demagnetization fault of the PM occur, which seriously affects the performance of the PM motor. To ensure the safe and reliable operation of PM motors, a method to diagnose the PM health is presented in this paper. The demagnetization ratio of the PM can be diagnosed quantitatively by its temperature. In this paper, the relationship between the temperature and the demagnetization ratio of a PM is obtained through thermal demagnetization tests, and the threshold temperature of demagnetization is given. Then, the health of a PM under different effectiveness of the cooling system in a high-speed PM motor is researched. Finally, the calculation results are verified by temperature tests of a high-speed PM motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sarikprueck, P., Lumyong, P., Nirojana, CN., et al.: “Magnetization of NdFeB permanent magnet considering demagnetization effect,” 21st international conference on electrical machines and systems, pp 649–652 (2018)

  2. Bochenkov, B., Lutz, S., “A review of modern materials of permanent magnets,” 8th Russian-Korean international symposium on science and technology, vol. 1, pp. 201–203 (2004)

  3. Adil Usman and Bharat Singh Rajpurohit: Modeling and Classification of stator inter-turn fault and demagnetization effects in BLDC motor using rotor back-EMF and radial magnetic flux analysis. IEEE Access 8, 118030–118049 (2020)

    Article  Google Scholar 

  4. Kim, B.-C., Lee, J.-H., Kang, D.-W.: A Study on the effect of eddy current loss and demagnetization characteristics of magnet division. IEEE Transact. Appl. Supercond. 30(4), 0600805 (2020)

    Article  Google Scholar 

  5. Wang, W., Zheng, P., Wang, M., et al.: Demagnetization and permanent-magnet minimization analyses of less-rare-earth interior permanent-magnet synchronous machines used for electric vehicles. IEEE Transact. Magnet. 54(11), 8109505 (2018)

    Article  MathSciNet  Google Scholar 

  6. Lee, B.-H., Jung, J.-W., Hong, J.-P.: An improved analysis method of irreversible demagnetization for a single-phase line-start permanent magnet motor. IEEE Transact. Magnet. 54(11), 8206905 (2018)

    Article  Google Scholar 

  7. Jeong, G., Kim, H., Lee, J.: A study on the design of ipmsm for reliability of demagnetization characteristics-based rotor. IEEE Transact. Appl. Supercond. 30(4), 5204805 (2020)

    Article  Google Scholar 

  8. Guo, B., Huang, Y., Peng, F., et al.: General analytical modeling for magnet demagnetization in surface mounted permanent magnet machines. IEEE Trans. Industr. Electron. 66(8), 5830–5838 (2019)

    Article  Google Scholar 

  9. Song, J., Zhao, J., Dong, F., et al.: demagnetization fault detection for double-sided permanent magnet linear motor based on three-line magnetic signal signature analysis. IEEE Transact. Mechatron. 25(2), 815–827 (2020)

    Article  Google Scholar 

  10. Gherabi, Z., Toumi, D., Benouzza, N., et al.: discrimination between demagnetization and eccentricity faults in PMSMs using real and imaginary components of stator current spectral analysis. J. Power Electron. 21, 153–163 (2021)

    Article  Google Scholar 

  11. Zhang, C., Gongping, Wu., Rong, F., et al.: “Robust Fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault.” IEEE Trans. Industr. Electron. 65(7), 5324–5334 (2018)

    Article  Google Scholar 

  12. Li, W., Feng, G., Lai, C., et al.: “Demagnetization analysis of interior permanent magnet machines under integrated charging operation.” IEEE Trans. Ind. Appl. 55(5), 5204–5213 (2019)

    Article  Google Scholar 

  13. Zhu, M., Wensong, Hu., Kar, N.C.: Acoustic noise-based uniform permanent-magnet demagnetization detection in SPMSM for high-performance PMSM drive. IEEE Transact. Transport. Electr. 4(1), 303–313 (2018)

    Article  Google Scholar 

  14. Song, J., Zhao, J., Zhang, X., et al.: accurate demagnetization faults detection of dual-sided permanent magnet linear motor using enveloping and time-domain energy analysis. IEEE Trans. Industr. Inf. 16(10), 6334–6346 (2020)

    Article  Google Scholar 

  15. Mehmet Recep Minaz and Eyyup Akcan: An effective method for detection of demagnetization fault in axial flux coreless PMSG with texture-based analysis. IEEE Access 9, 17438–17449 (2021)

    Article  Google Scholar 

  16. Krichen, M., Elbouchikhi, E., Benhadj, N., et al.: Motor current signature analysis-based permanent magnet synchronous motor demagnetization characterization and detection. Machines 8(35), 1–29 (2020)

    Google Scholar 

  17. Song, X., Zhao, J., Song, J., et al.: “Local demagnetization fault recognition of permanent magnet synchronous linear motor based on s-transform and PSO–LSSVM.” IEEE Trans. Power Electron. 35(8), 7816–7825 (2020)

    Article  Google Scholar 

  18. Shi, Y., Wang, J.: Continuous demagnetisation assessment for triple redundant nine-phase fault-tolerant permanent magnet machine. IET The J. Eng. 2019(17), 4359–4363 (2019)

    Google Scholar 

  19. Nishiyama, N., Uemura, H., Honda, Y.: Highly demagnetization performance IPMSM under hot environments. IEEE Trans. Ind. Appl. 55(1), 265–272 (2019)

    Article  Google Scholar 

  20. Omar Farrok, M.D., Rabiul Islam, M.D., Sheikh, R.I., et al.: Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Transact. Ind. Appl. 54(6), 6005–6014 (2018)

    Article  Google Scholar 

  21. You, Y.-M., Yoon, K.-Y.: Multi-objective optimization of permanent magnet synchronous motor for electric vehicle considering demagnetization. Appl. Sci. 11(5), 1–12 (2021)

    Article  Google Scholar 

  22. Mo, L., Gangxu, Z., Zhang, T., et al.: Multilevel optimization design for a flux-concentrating permanent-magnet brushless machine considering pm demagnetization limitation. IEEE Transact. Magn. 57(2), 8101105 (2021)

    Google Scholar 

  23. Zhang, Y., Xiang, Z., Zhu, X., et al.: Anti-demagnetization capability research of a less-rare-earth permanent-magnet synchronous motor based on the modulation principle. IEEE Transact. Magnet. 57(2), 8200706 (2021)

    Article  Google Scholar 

  24. Roberto Eduardo Quintal Palomo and Maciej Gwozdziewicz: Effect of demagnetization on a consequent pole IPM synchronous generator. Energies 13(23), 6371 (2020)

    Article  Google Scholar 

  25. Verkroost, L., De Bisschop, J., Vansompel, H., et al.: Active demagnetization fault compensation for axial flux permanent-magnet synchronous machines using an analytical inverse model. IEEE Trans. Energy Convers. 35(2), 591–599 (2020)

    Article  Google Scholar 

  26. Kim, D.-W., Kang, D.H., Kim, C.-H., et al.: Operation characteristic of IPMSM considering PM saturation temperature. IEEE Transact. Appl. Supercond. 30(4), 5207204 (2020)

    Article  Google Scholar 

  27. Li, W., Li, D., Li, J., et al.: Influence of rotor radial ventilation ducts number on temperature distribution of rotor excitation winding and fluid flow state between two poles of a fully air-cooled hydro-generator. IEEE Trans. Industr. Electron. 64(5), 3767–3775 (2017)

    Article  Google Scholar 

  28. Li, W., Cao, J., Zhang, X.: Electrothermal analysis of induction motor with compound cage rotor used for PHEV. IEEE Trans. Industr. Electron. 57(2), 660–668 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities 2019JBZ101 and the High power and high efficiency electric drive assembly system development and industrialization project TC210H02Q in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, W., Xie, W. et al. Health diagnosis of permanent magnets under different cooling system effectiveness in high-speed permanent magnet motors for electric vehicles. J. Power Electron. 23, 533–542 (2023). https://doi.org/10.1007/s43236-022-00547-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00547-2

Keywords

Navigation