Skip to main content

Advertisement

Log in

Mechanical design and control of a novel variable impedance actuator (VIA) for knee joint of a rehabilitation exoskeleton

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the presented paper, a novel mechanical design is suggested to utilize in the variable impedance actuators called VSAPLM. This mechanism is proposed for a knee rehabilitation portable exoskeleton and functions based on a lever mechanism with an adjustable pivot. To improve the mechanism efficiency, both actuation and stiffness transmission systems are designed completely symmetrically. Therefore, the energy loss and internal friction are reduced. Regarding the parallel configuration of the motors through two four-bar mechanisms, the actuator load is evenly distributed between each motor. Pivot moves along a straight line in the radial direction without any linear guide. Due to the spring frame, the spring’s deflection and output arms are perpendicular to each other, so the stored energy conversion of output torque is improved. Design feasibility is investigated via simulation and the results show that the proposed mechanism, i.e., VSAPLM using proportional derivative feedback with feedforward controller has high accuracy and good response in the control of position, adjustment of stiffness, and tracking goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li B, Yuan B, Chen J, Zuo Y, Yang Y (2017) Mechanical design and human–machine coupling dynamic analysis of a lower extremity exoskeleton. International conference on intelligent robotics and applications. Springer, pp 593–604

    Chapter  Google Scholar 

  2. Lee K, Liu D, Perroud L, Chavarriaga R, Millán JdR (2017) A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers. Robot Auton Syst 90:15–23

    Article  Google Scholar 

  3. Beyl P, Van Damme M, Van Ham R, Vanderborght B, Lefeber D (2009) Design and control of a lower limb exoskeleton for robot-assisted gait training. Appl Bionics Biomech 6(2):229–243

    Article  Google Scholar 

  4. Agrawal SK, Banala SK, Mankala K, Sangwan V, Scholz JP, Krishnamoorthy V, Hsu W-L Exoskeletons for gait assistance and training of the motor-impaired. In: 2007 IEEE 10th international conference on rehabilitation robotics, 2007. IEEE, pp 1108–1113

  5. Sale P, Franceschini M, Waldner A, Hesse S (2012) Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur J Phys Rehabil Med 48(1):111–121

    Google Scholar 

  6. Husemann B, Müller F, Krewer C, Heller S, Koenig E (2007) Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 38(2):349–354

    Article  Google Scholar 

  7. Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR (2006) Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci 26(41):10564–10568

    Article  Google Scholar 

  8. Rv H, Sugar T, Vanderborght B, Hollander K, Lefeber D (2009) Compliant actuator designs. IEEE Robot Autom Mag 3(16):81–94

    Google Scholar 

  9. Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614

    Article  Google Scholar 

  10. Jafari A, Vu HQ, Iida F (2016) Determinants for stiffness adjustment mechanisms. J Intell Rob Syst 82(3–4):435–454

    Article  Google Scholar 

  11. Tagliamonte NL, Sergi F, Accoto D, Carpino G, Guglielmelli E (2012) Double actuation architectures for rendering variable impedance in compliant robots: a review. Mechatronics 22(8):1187–1203

    Article  Google Scholar 

  12. Van Ham R, Vanderborght B, Van Damme M, Verrelst B, Lefeber D (2007) MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot Auton Syst 55(10):761–768

    Article  Google Scholar 

  13. Vanderborght B, Tsagarakis NG, Semini C, Van Ham R, Caldwell DG (2009) MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping. In: 2009 IEEE international conference on robotics and automation. IEEE, pp 544–549

  14. Wolf S, Hirzinger G (2008) A new variable stiffness design: Matching requirements of the next robot generation. In: 2008 IEEE international conference on robotics and automation. IEEE, pp 1741–1746

  15. Wolf S, Eiberger O, Hirzinger G The DLR FSJ: Energy based design of a variable stiffness joint. In: 2011 IEEE international conference on robotics and automation, 2011. IEEE, pp 5082–5089

  16. Torrealba RR, Udelman SB, Fonseca-Rojas ED (2017) Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton. Mech Mach Theory 116:248–261

    Article  Google Scholar 

  17. Liu Y, Liu X, Yuan Z, Liu J (2019) Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle. Mech Mach Theory 140:44–58

    Article  Google Scholar 

  18. Wolf S, Grioli G, Eiberger O, Friedl W, Grebenstein M, Höppner H, Burdet E, Caldwell DG, Carloni R, Catalano MG (2015) Variable stiffness actuators: review on design and components. IEEE/ASME Trans Mechatron 21(5):2418–2430

    Article  Google Scholar 

  19. Jafari A, Tsagarakis NG, Vanderborght B, Caldwell DG (2010) A novel actuator with adjustable stiffness (AwAS). In: 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 4201–4206

  20. Jafari A, Tsagarakis NG, Caldwell DG (2011) AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 4638–4643

  21. Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, pp 526–531

  22. Schiavi R, Grioli G, Sen S, Bicchi A (2008) VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: 2008 IEEE international conference on robotics and automation. IEEE, pp 2171–2176

  23. Kim B-S, Song J-B (2010) Hybrid dual actuator unit: a design of a variable stiffness actuator based on an adjustable moment arm mechanism. In: 2010 IEEE international conference on robotics and automation. IEEE, pp 1655–1660

  24. Fumagalli M, Barrett E, Stramigioli S, Carloni R (2012) The mVSA-UT: a miniaturized differential mechanism for a continuous rotational variable stiffness actuator. In: 2012 4th IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob). IEEE, pp 1943–1948

  25. Sun J, Zhang Y, Zhang C, Guo Z, Xiao X (2017) Mechanical design of a compact serial variable stiffness actuator (SVSA) based on lever mechanism. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 33–38

  26. Sun J, Guo Z, Sun D, He S, Xiao X (2018) Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech Mach Theory 130:123–136

    Article  Google Scholar 

  27. Groothuis SS, Rusticelli G, Zucchelli A, Stramigioli S, Carloni R (2012) The vsaUT-II: a novel rotational variable stiffness actuator. In: 2012 IEEE international conference on robotics and automation. IEEE, pp 3355–3360

  28. Choi J, Hong S, Lee W, Kang S, Kim M (2011) A robot joint with variable stiffness using leaf springs. IEEE Trans Rob 27(2):229–238

    Article  Google Scholar 

  29. Wang W, Fu X, Li Y, Yun C (2016) Design of variable stiffness actuator based on modified Gear–Rack mechanism. J Mech Robot 8(6)

  30. Wang W, Fu X, Li Y, Yun C (2018) Design and implementation of a variable stiffness actuator based on flexible gear rack mechanism. Robotica 36(3):448–462

    Article  Google Scholar 

  31. Hollander KW, Sugar TG, Herring DE (2005) Adjustable robotic tendon using a'Jack Spring'/spl trade. In: 9th international conference on rehabilitation robotics. ICORR 2005. IEEE, pp 113–118

  32. Vanderborght B, Van Ham R, Lefeber D, Sugar TG, Hollander KW (2009) Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int J Robot Res 28(1):90–103

    Article  Google Scholar 

  33. Chalvet V, Braun DJ (2017) Criterion for the design of low-power variable stiffness mechanisms. IEEE Trans Rob 33(4):1002–1010

    Article  Google Scholar 

  34. Liu L, Leonhardt S, Misgeld BJ (2016) Design and control of a mechanical rotary variable impedance actuator. Mechatronics 39:226–236

    Article  Google Scholar 

  35. Tsagarakis NG, Sardellitti I, Caldwell DG (2011) A new variable stiffness actuator (CompAct-VSA): Design and modelling. In 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 378–383. IEEE

  36. Cestari M, Sanz-Merodio D, Arevalo JC, Garcia E (2014) An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Trans Mechatron 20(2):889–898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ahmadi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarani, B., Ahmadi, H. Mechanical design and control of a novel variable impedance actuator (VIA) for knee joint of a rehabilitation exoskeleton. J Braz. Soc. Mech. Sci. Eng. 44, 81 (2022). https://doi.org/10.1007/s40430-022-03377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03377-2

Keywords

Navigation