Skip to main content

A Novel Actuator with Reconfigurable Stiffness for a Knee Exoskeleton: Design and Modeling

  • Conference paper
  • First Online:
Advances in Reconfigurable Mechanisms and Robots I

Abstract

This paper presents the design of a new inherently compliant actuator intended for the development of a knee exoskeleton. The proposed actuator has the ability to reconfigure the level of stiffness in order to achieve suitable torque-to-angular displacement profiles for different human tasks and users. The design specifications of the actuator have been obtained from motion capture and simulation data of sit-stand-sit motion cycle. The actuator functional principle and modeling are presented. Finally the mechatronic design of the actuator is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. Robot IEEE Trans 24(1):144–158

    Article  Google Scholar 

  2. Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the berkeley lower extremity exoskeleton (bleex). Mech IEEE/ASME Trans 11(2):128–138

    Article  Google Scholar 

  3. Guizzo E, Goldstein H (2005) The rise of the body bots. Spect IEEE 42(10):50–56

    Article  Google Scholar 

  4. Kawamoto H, Sankai Y (2002) Power assist system hal-3 for gait disorder person. In: Miesenberger K, Klaus J, Zagler W (Eds) Computers helping people with special needs, vol 2398. Lecture Notes in Computer Science, Springer, Berlin Heidelberg, pp 19–29

    Google Scholar 

  5. Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of mina: a robotic orthosis for paraplegics. Rehabilitation robotics (ICORR), 2011 IEEE international conference on, 29 June 2011–1 July 2011, pp 1–8

    Google Scholar 

  6. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H (2007) Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. Neural Sys Rehab Eng IEEE Trans 15(3):379–386

    Article  Google Scholar 

  7. Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. Rehabilitation robotics, 2007. ICORR 2007. IEEE 10th international conference on, June 2007, pp 401–407

    Google Scholar 

  8. Laffranchi M, Tsagarakis NG, Caldwell DG (2009) Safe human robot interaction via energy regulation control. Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ international conference on, oct 2009, pp 35–41

    Google Scholar 

  9. Beyl P (2010) Design and control of a knee exoskeleton powered by pleated pneumatic artificial muscles for robot-assisted gait rehabilitation. Ph.D. thesis, Vrije Universiteit Brussel

    Google Scholar 

  10. Van Ham R, Vanderborght B, Van Damme M, Verrelst B, Lefeber D (2007) Maccepa, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot Auton Sys 55(10):761– 768

    Google Scholar 

  11. Kralj A, Jaeger RJ, Munih M (1990) Analysis of standing up and sitting down in humans: definitions and normative data presentation. J Biomech 23(11):1123–1138

    Article  Google Scholar 

  12. Janssen WGM, Bussmann HBJ, Stam HJ (2002) Determinants of the sit-to-stand movement: a review. Phys Ther 82(9):866–879

    Google Scholar 

  13. NASA-STD-3000 man-systems integration standards, vol I

    Google Scholar 

  14. Riener R, Fuhr T (1998) Patient-driven control of fes-supported standing up: a simulation study. Rehab Eng IEEE Trans 6(2):113–124

    Article  Google Scholar 

  15. Kagaya H, Shimada Y, Ebata K, Sato M, Sato K, Yukawa T, Obinata G (1995) Restoration and analysis of standing-up in complete paraplegia utilizing functional electrical stimulation. Arch Phys Med Rehab 76(9):876–881

    Article  Google Scholar 

  16. Kerr KM, White JA, Barr DA, Mollan RAB (1997) Analysis of the sit-stand-sit movement cycle in normal subjects. Clin Biomech 12(4):236–245

    Article  Google Scholar 

  17. Shamaei K, Dollar AM (2011) On the mechanics of the knee during the stance phase of the gait. Rehabilitation robotics (ICORR), 2011 IEEE international conference on, 29 June 2011–July 1 2011, pp 1–7

    Google Scholar 

  18. Tsagarakis NG, Laffranchi M, Vanderborght B, Caldwell DG (2009) A compact soft actuator unit for small scale human friendly robots. Robotics and automation, 2009. ICRA’09. IEEE international conference on. IEEE, 2009, pp 4356–4362

    Google Scholar 

  19. Tsagarakis NG, Sardellitti I, Caldwell DG (2011) A new variable stiffness actuator (compact-vsa): design and modelling. Intelligent robots and systems (IROS), 2011 IEEE/RSJ international conference on. IEEE, 2011, pp 378–383

    Google Scholar 

  20. Moro FL, Tsagarakis NG, Caldwell DG (20011) A human-like walking for the compliant humanoid coman based on com trajectory reconstruction from kinematic motion primitives. 11th IEEE-RAS International Conference on Humanoid Robots, pp 364–370, 2011

    Google Scholar 

  21. Winter DA (1991) Biomechanics and motor control of human gait: normal, elderly and pathological, 2nd edn. University of Waterloo Press, Waterloo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos C. Karavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Karavas, N.C., Tsagarakis, N.G., Saglia, J., Galdwell, D.G. (2012). A Novel Actuator with Reconfigurable Stiffness for a Knee Exoskeleton: Design and Modeling. In: Dai, J., Zoppi, M., Kong, X. (eds) Advances in Reconfigurable Mechanisms and Robots I. Springer, London. https://doi.org/10.1007/978-1-4471-4141-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4141-9_37

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4140-2

  • Online ISBN: 978-1-4471-4141-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics