Skip to main content
Log in

Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The closed-loop flat-plate oscillating heat pipe (CL-FPOHP) is a new two-phase heat transfer device for an effective thermal management in different systems. A number of theoretical and experimental investigations have been carried out on the CL-FPOHP in the past decades after its invention. However, due to the operational mechanism of the CL-FPOHP, the effects of channel profile on the thermal resistance have not been completely revealed so far. This paper aims at discussing the thermal resistance and thermal conductivity by changing the shape and size of the CL-FPOHPs channel. The thermal resistances of the CL-FPOHPs were investigated by varying the channel shape from square to circular, channel sizes from 2 × 2 mm2 to 5 × 5 mm2, and heat load from 10 to 120 W. The pure copper was used to develop the CL-FPOHP and charged with the acetone with a charge ratio of 70%. The most suitable channel shape for the CL-FPOHP was found to be a square channel, and the most suitable channel size was observed to be 2 × 2 mm2. The highest thermal conductivity of the CL-FPOHP reached to 2137 W/m °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bo:

Bond number, \(\frac{{g\left( {\rho_{\text{l}} - \rho_{\text{v}} } \right)r_{\text{h}} }}{\sigma }^{2}\)

g :

Gravitational force (m/s2)

\(\rho_{\text{l}}\) :

Liquid density (kg/m3)

\(\rho_{\text{v}}\) :

Vapor density (kg/m3)

\(r_{\text{h}}\) :

Hydraulic radius (mm)

\(\sigma\) :

Surface tension (N/m)

Q :

Heat load (W)

R th :

Thermal resistance (°C/W)

U :

Internal energy (J)

T :

Temperature (°C)

CL-FPOHP:

Closed-loop flat-plate oscillating heat pipe

FPOHP:

Flat-plate oscillating heat pipe

TOHP:

Tubular oscillating heat pipe

e:

Evaporator

c:

Condenser

l:

Liquid

v:

Vapor

W:

Watt

L:

Distance of the two centers of the evaporator and condenser

A:

Total cross-sectional area of CL-FPOHP

References

  1. Mudawar I (2013) Recent advances in high-flux, two-phase thermal management. J Therm Sci Eng Appl 5(2):021012–021015. https://doi.org/10.1115/1.4023599

    Article  Google Scholar 

  2. Chen X, Ye H, Fan X, Ren T, Zhang G (2016) A review of small heat pipes for electronics. Appl Therm Eng 96:1–17. https://doi.org/10.1016/j.applthermaleng.2015.11.048

    Article  Google Scholar 

  3. Kearney DJ, Suleman O, Griffin J, Mavrakis G (2016) Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications. Appl Therm Eng 98:798–809. https://doi.org/10.1016/j.applthermaleng.2015.11.123

    Article  Google Scholar 

  4. Olivier JA, Marcinichen JB, Bruch A, Thome J (2011) Green cooling of high performance microprocessors: parametric study between flow boiling and water cooling. J Therm Sci Eng Appl 3(4):041003. https://doi.org/10.1115/1.4004435

    Article  Google Scholar 

  5. Thompson S, Ma H, Winholtz R, Wilson C (2009) Experimental investigation of miniature three-dimensional flat-plate oscillating heat pipe. J Heat Transf 131(4):043210

    Article  Google Scholar 

  6. Hu C, Jia L (2011) Experimental study on the start up performance of flat plate pulsating heat pipe. J Therm Sci 20(2):150–154

    Article  Google Scholar 

  7. Mehta K, Mehta N (2016) Development of flat plate oscillating heat pipe as a heat transfer device. Front Heat Pipes (FHP) 7(1):1–7. https://doi.org/10.5098/fhp.7.6

    Article  MathSciNet  Google Scholar 

  8. Thompson S, Hathaway A, Smoot C, Wilson C, Ma H, Young R, Greenberg L, Osick B, Van Campen S, Morgan B (2011) Robust thermal performance of a flat-plate oscillating heat pipe during high-gravity loading. J Heat Transf 133(10):104504

    Article  Google Scholar 

  9. Lu Q, Jia L (2016) Experimental study on rack cooling system based on a pulsating heat pipe. J Therm Sci 25(1):60–67

    Article  Google Scholar 

  10. Devakar M, Raje A (2018) Modelling and analysis of the unsteady flow and heat transfer of immiscible micropolar and Newtonian fluids through a pipe of circular cross section. J Braz Soc Mech Sci Eng 40(6):325

    Article  Google Scholar 

  11. Khoshkbijari BA, Karimi H (2017) Effect of pipe geometry and material properties on flow characteristics and thermal performance of a conical Hartmann–Sprenger tube. J Braz Soc Mech Sci Eng 39(11):4489–4501

    Article  Google Scholar 

  12. Marcinichen JB, Olivier JA, Lamaison N, Thome JR (2013) Advances in electronics cooling. Heat Transf Eng 34(5–6):434–446. https://doi.org/10.1080/01457632.2012.721316

    Article  Google Scholar 

  13. Thompson S, Ma H, Wilson C (2011) Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Exp Therm Fluid Sci 35(7):1265–1273

    Article  Google Scholar 

  14. Jang DS, Kim D, Hong SH, Kim Y (2018) Comparative thermal performance evaluation between ultrathin flat plate pulsating heat pipe and graphite sheet for mobile electronic devices at various operating conditions. Appl Therm Eng 149:1427–1434

    Article  Google Scholar 

  15. Ebrahimi M, Shafii M, Bijarchi M (2015) Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels. Appl Therm Eng 90:838–847. https://doi.org/10.1016/j.applthermaleng.2015.07.040

    Article  Google Scholar 

  16. Lee J, Joo Y, Kim SJ (2018) Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes. Int J Heat Mass Transf 124:1172–1180

    Article  Google Scholar 

  17. Thompson SM, Lu H, Ma H (2014) Thermal spreading with flat-plate oscillating heat pipes. J Thermophys Heat Transf 29(2):338–345. https://doi.org/10.2514/1.T4168

    Article  Google Scholar 

  18. Mudawar I (2011) Two-phase microchannel heat sinks: theory, applications, and limitations. J Electron Packag 133(4):041002–041032

    Article  Google Scholar 

  19. Laun F, Lu H, Ma H (2015) An experimental investigation of an oscillating heat pipe heat spreader. J Therm Sci Eng Appl 7(2):2100–2105. https://doi.org/10.1115/1.4026815

    Article  Google Scholar 

  20. Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B (2007) State of the art of high heat flux cooling technologies. Heat Transf Eng 28(4):258–281. https://doi.org/10.1080/01457630601117799

    Article  Google Scholar 

  21. Thompson S, Cheng P, Ma H (2011) An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels. Int J Heat Mass Transf 54(17–18):3951–3959

    Article  Google Scholar 

  22. Gaugler RS (1944) Heat transfer device. USA Patent 2350348, June 6

  23. Zhang Y, Faghri A (2008) Advances and unsolved issues in pulsating heat pipes. Heat Transf Eng 29(1):20–44. https://doi.org/10.1080/01457630701677114

    Article  Google Scholar 

  24. Stevens KA, Smith SM, Taft BS (2019) Variation in oscillating heat pipe performance. Appl Therm Eng 149:987–995. https://doi.org/10.1016/j.applthermaleng.2018.12.113

    Article  Google Scholar 

  25. Wang X, Jia L (2016) Experimental study on heat transfer performance of pulsating heat pipe with refrigerants. J Therm Sci 25(5):449–453

    Article  Google Scholar 

  26. Jia H, Jia L, Tan Z (2013) An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe. J Therm Sci 22(5):484–490

    Article  MathSciNet  Google Scholar 

  27. Li J, Yan L (2008) Experimental research on heat transfer of pulsating heat pipe. J Therm Sci 17(2):181–185

    Article  Google Scholar 

  28. Patel V, Mehta N, Mehta K, Badgujar A, Mehta S, Bora N (2019) Experimental investigation of flat plate cryogenic oscillating heat pipe. J Low Temp Phys 198:41–55. https://doi.org/10.1007/s10909-019-02243-1

    Article  Google Scholar 

  29. Akachi H (1990) Structure of a heat pipe. USA Patent 4921041 A

  30. Han X, Wang X, Zheng H, Xu X, Chen G (2016) Review of the development of pulsating heat pipe for heat dissipation. Renew Sustain Energy Rev 59:692–709. https://doi.org/10.1016/j.rser.2015.12.350

    Article  Google Scholar 

  31. Mehta K, Mehta N, Patel V (2020) Experimental investigation of the thermal performance of closed loop flat plate oscillating heat pipe. Exp Heat Transf. https://doi.org/10.1080/08916152.2020.1718802

    Article  Google Scholar 

  32. Smoot C, Ma H, Wilson C, Greenberg L Heat conduction effect on oscillating heat pipe operation. In: ASME/JSME 2011 8th thermal engineering joint conference T30099-T30099-30010

  33. Wang X, Gao X, Bao K, Hua C, Han X, Chen G (2019) Experimental investigation on the temperature distribution characteristics of the evaporation section in a pulsating heat pipe. J Therm Sci 28(2):246–251

    Article  Google Scholar 

  34. Xu R, Chen H, Wu Q, Xu S, Wang R (2019) Testing and modeling of the dynamic response characteristics of pulsating heat pipes during the start-up process. J Therm Sci 28(1):72–81

    Article  Google Scholar 

  35. Liu X, Chen Y (2014) Fluid flow and heat transfer in flat-plate oscillating heat pipe. Energy Build 75:29–42. https://doi.org/10.1016/j.enbuild.2014.01.041

    Article  Google Scholar 

  36. Borgmeyer B, Ma H (2007) Experimental investigation of oscillating motions in a flat plate pulsating heat pipe. J Thermophys Heat Transf 21(2):405–409. https://doi.org/10.2514/1.23263

    Article  Google Scholar 

  37. Thompson S, Ma H (2010) Effect of localized heating on three-dimensional flat-plate oscillating heat pipe. Adv Mech Eng 2:1–10. https://doi.org/10.1155/2010/465153

    Article  Google Scholar 

  38. Lv L, Li J, Zhou G (2017) A robust pulsating heat pipe cooler for integrated high power LED chips. Heat Mass Transf 53(11):3305–3313. https://doi.org/10.1007/s00231-017-2050-3

    Article  Google Scholar 

  39. Xu J, Li Y, Wong T (2005) High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf 48(16):3338–3351. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.034

    Article  Google Scholar 

  40. Ayel V, Araneo L, Marzorati P, Romestant C, Bertin Y, Marengo M (2018) Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid thermosyphons under various gravity levels. Heat Transf Eng. https://doi.org/10.1080/01457632.2018.1426244

    Article  Google Scholar 

  41. Mohammadi M, Mohammadi M, Ghahremani AR, Shafii MB, Mohammadi N (2014) Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe. Heat Transf Eng 35(1):25–33. https://doi.org/10.1080/01457632.2013.810086

    Article  Google Scholar 

  42. Soponpongpipat N, Sakulchangsatjaati P, Kammuang-Lue N, Terdtoon P (2009) Investigation of the startup condition of a closed-loop oscillating heat pipe. Heat Transf Eng 30(8):626–642. https://doi.org/10.1080/01457630802656876

    Article  Google Scholar 

  43. Sedighi E, Amarloo A, Shafii B (2018) Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section. Int J Heat Mass Transf 126:431–441. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.047

    Article  Google Scholar 

  44. Sakulchangsatjatai P, Terdtoon P, Wongratanaphisan T, Kamonpet P, Murakami M (2004) Operation modeling of closed-end and closed-loop oscillating heat pipes at normal operating condition. Appl Therm Eng 24(7):995–1008. https://doi.org/10.1016/j.applthermaleng.2003.11.006

    Article  Google Scholar 

  45. Zhang Y, Faghri A (2002) Heat transfer in a pulsating heat pipe with open end. Int J Heat Mass Transf 45(4):755–764. https://doi.org/10.1016/S0017-9310(01)00203-4

    Article  MATH  Google Scholar 

  46. Liu X, Hao Y (2009) Numerical simulation of vapor-liquid two-phase flow in a closed loop oscillating heat pipe. In: ASME 2009 international mechanical engineering congress and exposition, pp 609–617

  47. Mehta KK, Mehta N, Patel V (2019) Effect of operational parameters on the thermal performance of flat plate oscillating heat pipe. J Heat Transf. https://doi.org/10.1115/1.4044825

    Article  Google Scholar 

  48. Alijani H, Çetin B, Akkuş Y, Dursunkaya Z (2018) Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes. Appl Therm Eng 132:174–187

    Article  Google Scholar 

  49. Cecere A, De Cristofaro D, Savino R, Ayel V, Sole-Agostinelli T, Marengo M, Romestant C, Bertin Y (2018) Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign. Acta Astronaut 147:454–461

    Article  Google Scholar 

  50. Cheng P, Thompson S, Boswell J, Ma H (2010) An investigation of flat-plate oscillating heat pipes. J Electron Packag 132(4):041006–041009. https://doi.org/10.1115/1.4002726

    Article  Google Scholar 

  51. Chien K, Chen Y, Lin Y, Wang C, Yang K The experimental studies of flat-plate closed-loop pulsating heat pipes. In: The tenth international heat pipe symposium, pp 212–216

  52. Charoensawan P, Khandekar S, Groll M, Terdtoon P (2003) Closed loop pulsating heat pipes: part A: parametric experimental investigations. Appl Therm Eng 23(16):2009–2020. https://doi.org/10.1016/S1359-4311(03)00159-5

    Article  Google Scholar 

  53. Yang H, Khandekar S, Groll M (2008) Operational limit of closed loop pulsating heat pipes. Appl Therm Eng 28(1):49–59

    Article  Google Scholar 

  54. Srikrishna P, Siddharth N, Reddy S, Narasimham G (2019) Experimental investigation of flat plate closed loop pulsating heat pipe. Heat Mass Transf 55:1–13

    Article  Google Scholar 

  55. Khandekar S, Groll M (2004) An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes. Int J Therm Sci 43(1):13–20

    Article  Google Scholar 

  56. Saha N, Das P, Sharma P (2014) Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe. Int J Heat Mass Transf 74:238–250

    Article  Google Scholar 

  57. Groll M, Khandekar S Pulsating heat pipes: progress and prospects. In: Proceedings of the international conference on energy and the environment, China

  58. Hao T, Ma H, Ma X (2019) Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluids. Int J Heat Mass Transf 131:109–120. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.133

    Article  Google Scholar 

  59. Wang H, Yin D, Ma H (2017) Heat transfer analysis of a liquid plug flowing in a tube. Heat Transf Res 48(8):757–769

    Article  Google Scholar 

  60. Hao T, Ma X, Lan Z (2018) Effects of hydrophilic and hydrophobic surfaces on start-up performance of an oscillating heat pipe. J Heat Transf 140(1):012002

    Article  Google Scholar 

  61. Akachi H (1996) Pulsating heat pipes. In: Proceedings 5th international heat pipe symposium

  62. Hao T, Ma X, Lan Z, Li N, Zhao Y (2014) Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe. J Heat Transf 136(8):082001–082013. https://doi.org/10.1115/1.4027390

    Article  Google Scholar 

  63. Chaudhary B, Patel V, Ramkumar P, Vora J (2019) Temperature distribution during friction stir welding of AA2014 aluminum alloy: experimental and statistical analysis. Trans Indian Inst Met 72(4):969–981

    Article  Google Scholar 

  64. Patel VV, Badheka VJ, Kumar A (2017) Influence of pin profile on the tool plunge stage in friction stir processing of Al–Zn–Mg–Cu alloy. Trans Indian Inst Met 70(4):1151–1158

    Article  Google Scholar 

  65. Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. J Fluids Eng 107(2):173–178

    Article  Google Scholar 

  66. Bastakoti D, Zhang H, Li D, Cai W, Li F (2018) An overview on the developing trend of pulsating heat pipe and its performance. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.05.121

    Article  Google Scholar 

  67. Liu S, Li J, Dong X, Chen H (2007) Experimental study of flow patterns and improved configurations for pulsating heat pipes. J Therm Sci 16(1):56–62

    Article  Google Scholar 

  68. Khandekar S, Schneider M, Schafer P, Kulenovic R, Groll M (2002) Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microscale Thermophys Eng 6(4):303–317. https://doi.org/10.1080/10893950290098340

    Article  Google Scholar 

  69. Yang H, Khandekar S, Groll M (2009) Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci 48(4):815–824

    Article  Google Scholar 

  70. Wang HS, Rose JW (2005) A theory of film condensation in horizontal noncircular section microchannels. J Heat Transf 127(10):1096–1105

    Article  Google Scholar 

  71. Khandekar S, Dollinger N, Groll M (2003) Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Appl Therm Eng 23(6):707–719

    Article  Google Scholar 

  72. Charoensawan P, Terdtoon P (2008) Thermal performance of horizontal closed-loop oscillating heat pipes. Appl Therm Eng 28(5–6):460–466

    Article  Google Scholar 

  73. Youn YJ, Kim SJ (2012) Fabrication and evaluation of a slicon-based micro pulsating heat spreader. Sens Actuators A 174:189–197

    Article  Google Scholar 

  74. Smoot C, Ma H (2014) Experimental investigation of a three-layer oscillating heat pipe. J Heat Transf 136(5):051501

    Article  Google Scholar 

  75. Karthikeyan V, Ramachandran K, Pillai B, Solomon AB (2013) Effect of number of turns on the temperature pulsations and corresponding thermal performance of pulsating heat pipe. J Enhanc Heat Transf 20(5):443–452

    Article  Google Scholar 

  76. Khandekar S Pulsating heat pipe based heat exchangers. In: Proceedings of 21st international symposium on transport phenomena

Download references

Acknowledgements

This project has been supported by the Gujarat Technological University (Grant No: 201921003211) under Student Start-up and innovation Policy (SSIP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamlesh Mehta or Vivek Patel.

Additional information

Technical Editor: Francis HR Franca, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, K., Mehta, N. & Patel, V. Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe. J Braz. Soc. Mech. Sci. Eng. 42, 123 (2020). https://doi.org/10.1007/s40430-020-2213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2213-x

Keywords

Navigation