Skip to main content
Log in

Experimental Investigation of Flat Plate Cryogenic Oscillating Heat Pipe

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent developments in applications such as high-temperature superconducting magnets, infrared detectors, and electronics components have led to an alarming increase in heat dissipation rate, which now far exceeds the capability of conventional heat pipe cooling systems. This trend is responsible for a recent transition to flat plate oscillating heat pipes. A new flat plate cryogenic oscillating heat pipe (FPC-OHP) has been developed and validated through experimentations. The performance evaluation of FPC-OHP was investigated with temperature measurements. FPC-OHP consisted of evaporator, condenser, and adiabatic section with the dimensions of 93 × 70 × 8 mm3. The FPC-OHP was made of copper alloy and fabricated by a vertical milling machine, having square channels with a hydraulic radius of 0.66 mm. Liquid nitrogen was used as a working fluid with a charge ratio of 60%. Experimental results revealed the maximum heat transport capability up to 300 W. Moreover, the thermal resistance decreased from 0.25 to 0.11 K/W corresponding to an increase in the heat load from 25 to 300 W. The average temperature difference between evaporator section and condenser section reached up to 34 K for 300 W. The measured effective thermal conductivities were found to be 7353 W/m K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bo:

Bond number

g :

Gravitational force (m/s2)

\( \sigma_{\text{v}} \) :

Liquid density (kg/m3)

\( \sigma_{\text{l}} \) :

Vapor density (kg/m3)

\( r_{\text{h}} \) :

Hydraulic radius (mm)

\( \sigma \) :

Surface tension (kg/s2)

Q :

Heat load (W)

R th :

Thermal resistance (K/W)

U :

Internal energy (J)

T :

Temperature (°C)

e:

Evaporator

c:

Condenser

l:

Liquid

v:

Vapor

FP-OHP:

Flat plate oscillating heat pipe

FPC-OHP:

Flat plate cryogenic oscillating heat pipe

K e :

Effective thermal conductivity

W:

Watt

D :

Distance of the two centers of the evaporator and condenser

A :

Total cross-sectional area of FP-OHP

References

  1. I. Mudawar, Recent advances in high-flux, two-phase thermal management. J. Therm. Sci. Eng. Appl. 5(2), 021012–021015 (2013). https://doi.org/10.1115/1.4023599

    Article  Google Scholar 

  2. I. Mudawar, Two-phase microchannel heat sinks: theory, applications, and limitations. J. Electron. Packag. 133(4), 041002–041032 (2011)

    Article  Google Scholar 

  3. L. Lv, J. Li, G. Zhou, A robust pulsating heat pipe cooler for integrated high power LED chips. Heat Mass Transf. 53(11), 3305–3313 (2017). https://doi.org/10.1007/s00231-017-2050-3

    Article  ADS  Google Scholar 

  4. K. Yuan, Y. Ji, J. Chung, W. Shyy, Cryogenic boiling and two-phase flow during pipe chilldown in earth and reduced gravity. J. Low Temp. Phys. 150(1–2), 101 (2008)

    Article  ADS  Google Scholar 

  5. H. Hu, T.K. Wijeratne, J. Chung, Two-phase flow and heat transfer during chilldown of a simulated flexible metal hose using liquid nitrogen. J. Low Temp. Phys. 174(5–6), 247–268 (2014)

    Article  ADS  Google Scholar 

  6. A. Agarwal, J. Chung, A direct numerical simulation of axisymmetric cryogenic chill down in a pipe in microgravity. J. Low Temp. Phys. 179(3–4), 186–230 (2015)

    Article  ADS  Google Scholar 

  7. G. Peterson, G. Compagna, Review of cryogenic heat pipes in spacecraft applications. J. Spacecr. Rockets 24(2), 99–100 (1987)

    Article  ADS  Google Scholar 

  8. Q. Liang, T. Hao, K. Wang, X. Ma, Z. Lan, Y. Wang, Startup and transport characteristics of oscillating heat pipe using ionic liquids. Int. Commun. Heat Mass Transf. 94, 1–13 (2018)

    Article  Google Scholar 

  9. K. Natsume, T. Mito, N. Yanagi, H. Tamura, T. Tamada, K. Shikimachi, N. Hirano, S. Nagaya, Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets. Cryogenics 51(6), 309–314 (2011)

    Article  ADS  Google Scholar 

  10. X. Han, X. Wang, H. Zheng, X. Xu, G. Chen, Review of the development of pulsating heat pipe for heat dissipation. Renew. Sustain. Energy Rev. 59, 692–709 (2016). https://doi.org/10.1016/j.rser.2015.12.350

    Article  Google Scholar 

  11. T. Mito, K. Natsume, N. Yanagi, H. Tamura, T. Tamada, K. Shikimachi, N. Hirano, S. Nagaya, Development of highly effective cooling technology for a superconducting magnet using cryogenic OHP. IEEE Trans. Appl. Supercond. 20(3), 2023–2026 (2010)

    Article  ADS  Google Scholar 

  12. X. Liu, Y. Chen, Fluid flow and heat transfer in flat-plate oscillating heat pipe. Energy Build. 75, 29–42 (2014). https://doi.org/10.1016/j.enbuild.2014.01.041

    Article  Google Scholar 

  13. B. Borgmeyer, H. Ma, Experimental investigation of oscillating motions in a flat plate pulsating heat pipe. J. Thermophys. Heat Transfer 21(2), 405–409 (2007). https://doi.org/10.2514/1.23263

    Article  Google Scholar 

  14. W. Kim, S.J. Kim, Effect of reentrant cavities on the thermal performance of a pulsating heat pipe. Appl. Therm. Eng. 133, 61–69 (2018)

    Article  Google Scholar 

  15. Z. Li, L. Jia, Experimental study on natural convection cooling of LED using a flat-plate pulsating heat pipe. Heat Transf. Res. 44(1), 133–144 (2013)

    Article  MathSciNet  Google Scholar 

  16. S. Thompson, H. Ma, Effect of localized heating on three-dimensional flat-plate oscillating heat pipe. Adv. Mech. Eng. 2, 1–10 (2010). https://doi.org/10.1155/2010/465153

    Article  Google Scholar 

  17. Y. Zhang, A. Faghri, Advances and unsolved issues in pulsating heat pipes. Heat Transf. Eng. 29(1), 20–44 (2008). https://doi.org/10.1080/01457630701677114

    Article  ADS  Google Scholar 

  18. X. Zhang, Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids. Exp. Heat Transf. 17(1), 47–67 (2004)

    Article  ADS  Google Scholar 

  19. S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic, M. Groll, Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microscale Thermophys. Eng. 6(4), 303–317 (2002). https://doi.org/10.1080/10893950290098340

    Article  Google Scholar 

  20. P. Cheng, S. Thompson, J. Boswell, H. Ma, An investigation of flat-plate oscillating heat pipes. J. Electron. Packag. 132(4), 041009 (2010). https://doi.org/10.1115/1.4002726

    Article  Google Scholar 

  21. F. Lefèvre, S. Lips, R. Rullière, J.-B. Conrardy, M. Raynaud, J. Bonjour, Flat plate heat pipes: from observations to the modeling of the capillary structure. Front. Heat Pipes (FHP) 3(1), 1–9 (2012). https://doi.org/10.5098/fhp.v3.1.3001

    Article  Google Scholar 

  22. D.S. Jang, E.-J. Lee, S.H. Lee, Y. Kim, Thermal performance of flat plate pulsating heat pipes with mini-and microchannels. Int. J. Air Cond. Refrig. 22(04), 1–7 (2014)

    Article  Google Scholar 

  23. B. Taft, F. Laun, Experimental investigation of in situ pressure measurement of an oscillating heat pipe. Front. Heat Pipes (FHP) 5(1), 1–5 (2014)

    Google Scholar 

  24. S.M. Thompson, H. Lu, H. Ma, Thermal spreading with flat-plate oscillating heat pipes. J. Thermophys. Heat Transf. 29(2), 338–345 (2014). https://doi.org/10.2514/1.T4168

    Article  Google Scholar 

  25. T. Hao, X. Ma, Z. Lan, N. Li, Y. Zhao, Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe. J. Heat Transf. 136(8), 082001–082013 (2014). https://doi.org/10.1115/1.4027390

    Article  Google Scholar 

  26. W. Wits, G. Groeneveld, H.J. Van Gerner, Experimental investigation of a flat-plate closed-loop pulsating heat pipe. J. Heat Transf. (2018). https://doi.org/10.1115/1.4042367

    Article  Google Scholar 

  27. J. Qu, H. Wu, P. Cheng, Q. Wang, Q. Sun, Recent advances in MEMS-based micro heat pipes. Int. J. Heat Mass Transf. 110, 294–313 (2017)

    Article  Google Scholar 

  28. K. Mehta, N. Mehta, Development of flat plate oscillating heat pipe as a heat transfer device. Frontiers in Heat Pipes (FHP) 7(1), 1–7 (2016). https://doi.org/10.5098/fhp.7.6

    Article  MathSciNet  Google Scholar 

  29. A. Jiao, H. Ma, J. Critser, Experimental investigation of cryogenic oscillating heat pipes. Int. J. Heat Mass Transf. 52(15–16), 3504–3509 (2009)

    Article  Google Scholar 

  30. R.F. Barron, G.F. Nellis, Cryogenic Heat Transfer (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  31. R.F. Barron, Cryogenic Systems (Clarendon Press, Oxford, 1985)

    Google Scholar 

  32. W. Shi, L. Pan, Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. J. Therm. Sci. 26(1), 73–81 (2017)

    Article  ADS  Google Scholar 

  33. M.L. Rahman, M. Chowdhury, N.A. Islam, S.M. Mufti, M. Ali, Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol. AIP Conf. Proc. 1754, 050011 (2016)

    Article  Google Scholar 

  34. K. Mehta, N. Mehta, V. Patel, Effect of operational parameters on the thermal performance of flat plate oscillating heat pipe. J. Heat Transf (2019). https://doi.org/10.1115/1.4044825

    Article  Google Scholar 

  35. E. Sedighi, A. Amarloo, B. Shafii, Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section. Int. J. Heat Mass Transf. 126, 431–441 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.047

    Article  Google Scholar 

  36. M. Ebrahimi, M. Shafii, M. Bijarchi, Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels. Appl. Therm. Eng. 90, 838–847 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.040

    Article  Google Scholar 

  37. R.J. Moffat, Using uncertainty analysis in the planning of an experiment. J. Fluids Eng. 107(2), 173–178 (1985)

    Article  Google Scholar 

  38. D. Xu, L. Li, H. Liu, Experimental investigation on the thermal performance of helium based cryogenic pulsating heat pipe. Exp. Thermal Fluid Sci. 70, 61–68 (2016)

    Article  Google Scholar 

  39. Q. Liang, Y. Li, Q. Wang, Study on a neon cryogenic oscillating heat pipe with long heat transport distance. Heat Mass Transf. 54(6), 1721–1727 (2018)

    Article  ADS  Google Scholar 

  40. F. Bonnet, P. Gully, V. Nikolayev, Development and test of a cryogenic pulsating heat pipe and a pre-cooling system. AIP Conf. Proc. 1434, 607–614 (2012)

    Article  ADS  Google Scholar 

  41. H. Deng, Y. Liu, R. Ma, D. Han, Z. Gan, J. Pfotenhauer, Experimental investigation on a pulsating heat pipe with hydrogen. IOP Conf. Ser. Mater. Sci. Eng. 101, 1–8 (2015)

    Article  Google Scholar 

  42. Q. Liang, Y. Li, Q. Wang, Experimental investigation on the performance of a neon cryogenic oscillating heat pipe. Cryogenics 84, 7–12 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has been supported by the Gujarat Technological University (Grant No. 201921003211) under student startup and innovation Policy (SSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Mehta, N., Mehta, K. et al. Experimental Investigation of Flat Plate Cryogenic Oscillating Heat Pipe. J Low Temp Phys 198, 41–55 (2020). https://doi.org/10.1007/s10909-019-02243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02243-1

Keywords

Navigation