Skip to main content
Log in

Transient response and rub-impact phenomenon of liquid lubricated non-contacting mechanical seals during external pressure fluctuation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the dynamic contact behavior and transient response of liquid lubricated non-contacting mechanical seals during external pressure fluctuation. The presented model of spiral groove mechanical seals includes the Reynolds equation considering surface roughness and mass-conserving cavitation boundary, elastoplastic asperity contact model expressing rub-impact phenomenon, as well as the dynamic equation describing the vibrations of stator which were solved simultaneously with a numerical method. Results indicate that the vibration amplitude and frequency of sealing performances are affected significantly by the external pressure. The increment of rotational speed avoids face rub-contact and reduces the instantaneous variation of leakage. The results presented in the study are expected to provide a theoretical guidance to improve stability and safety of sealing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B :

Material-dependent exponent

C :

Critical yield stress coefficient

c sz , :

Axial and angular damping

E 1 ,2 :

Young’s moduli

F f :

Fluid bearing force

F as :

Asperity bearing force

F cls :

Closing force

H 1 ,2 :

Hardness of the material

H G :

Geometrical hardness limit

h :

Film thickness at any point

h 0 :

Initial film thickness

h g :

Groove depth

K sz ,sγ :

Axial and angular stiffness

M fx ,fy :

Loading moments of fluid

M cx ,cy :

Loading moments of asperity

m 0 ,2,4 :

Spectral moments of surface profile

m s :

Mass of the stator

N :

Spiral groove number

p :

Pressure distribution

p c :

Cavitation pressure

p i :

Inner pressure

p o :

Outer pressure

Q :

Leakage rate

R :

Asperity radius

r g :

Groove radius

r i :

Inner radius

r o :

Outer radius

r b :

Balanced radius

Sy 1 ,2 :

The yield strength

u z sx sy :

Axial and angular displacement

z r :

Rotor's axial excitation motion

α :

Spiral groove angle

β :

Surface parameter

γ si :

Initial angular misalignment of stator

η s :

Asperity density

σ :

Standard deviation of surface heights

Φr,s :

Pressure flow factor

Φs :

Shear flow factor

Φc :

Contact factor

ρ :

Lubricant density

ρ L :

Fluid density

Φ:

Density ratio of fluid film, Φ = ρ/ρL

Ω:

Successive over-relaxation factor

θ :

Grid size in circumferential direction

r :

Grid size in radial direction

t :

Time-step

ν 1 ,2 :

Poisson's ratios

ω c :

Critical interference at the initial point of yielding

References

  1. Zhang GY, Yan XT, Zhang Y, Zhao WG, Chen GZ (2018) Study on the water-lubricated high-speed noncontact mechanical face seal supported by a disc spring. J Braz Soc Mech Sci 40(7):351. https://doi.org/10.1007/s40430-018-1270-x

    Article  Google Scholar 

  2. Zou M, Dayan J, Green I (2000) Dynamic simulation and monitoring of a non-contacting flexibly mounted rotor mechanical face seal. P I Mech Eng C-J Mec 214(9):1195–1206. https://doi.org/10.1243/0954406001523632

    Article  Google Scholar 

  3. Varney P, Green I (2017) Impact phenomena in a noncontacting mechanical face seal. J Tribol-T ASME 139(2):197–231. https://doi.org/10.1115/1.4033366

    Article  Google Scholar 

  4. Li Y, Hao M, Sun X, Li Z, Wang Y, Xu L, Cao H (2020) Dynamic response of spiral groove liquid film seal to impact conditions. Tribol Int 141:105865. https://doi.org/10.1016/j.triboint.2019.105865

    Article  Google Scholar 

  5. Metcalfe R (1981) Dynamic tracking of angular misalignment in liquid-lubricated end-face seals. Tribol Trans 24(4):509–516. https://doi.org/10.1080/05698198108983050

    Article  Google Scholar 

  6. Green I (2002) A transient dynamic analysis of mechanical seals including asperity contact and face deformation. Tribol Trans 45(3):284–293. https://doi.org/10.1080/10402000208982551

    Article  Google Scholar 

  7. Green I, Barnsby RM (2002) A parametric analysis of the transient forced response of non-contacting coned-face gas seals. J Tribol-T ASME 124(1):9–16. https://doi.org/10.1115/1.1401015

    Article  Google Scholar 

  8. Salant RF, Cao B (2005) Unsteady analysis of a mechanical seal using Duhamel’s method. J Tribol-T ASME 127(1):623–631. https://doi.org/10.1115/1.1924427

    Article  Google Scholar 

  9. Zhao YM, Hu JB, Wei C (2014) Dynamic analysis of spiral-groove rotary seal ring for wet clutches. J Tribol-T ASME 136(2):031710. https://doi.org/10.1115/1.4027548

    Article  Google Scholar 

  10. Fan W, Huang W, Liu Y et al (2019) State evolution of dry gas seal during repeated start-stop operation using acoustic emission method. Tribol T. https://doi.org/10.1080/10402004.2019.1674984

    Article  Google Scholar 

  11. Huang W, Lin Y, Liu Y et al (2013) Face rub-impact monitoring of a dry gas seal using acoustic emission. Tribol Lett 52(2):253–259. https://doi.org/10.1007/s11249-013-0210-2

    Article  Google Scholar 

  12. Hu ST, Huang WF, Liu XF, Wang YM (2018) Application of fractal contact model in dynamic performance analysis of gas face seals. Chin J Mech Eng-En 31(1):27. https://doi.org/10.1186/s10033-018-0224-7

    Article  Google Scholar 

  13. Cochain J, Brunetière N, Parry A et al (2020) Experimental and numerical study of wavy mechanical face seals operating under pressure inversions. P I Mech Eng J-J Eng 234(2):247–260. https://doi.org/10.1177/1350650119862696

    Article  Google Scholar 

  14. Blasiak S, Zahorulko AV (2016) A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces. Tribol Int 94:126–137. https://doi.org/10.1016/j.triboint.2015.08.014

    Article  Google Scholar 

  15. Varney P, Green I (2017) Steady-state response of a flexibly-mounted stator mechanical face seal subject to dynamic forcing of a flexible rotor. J Tribol-T ASME 139:062201-1. https://doi.org/10.1115/1.4036380

    Article  Google Scholar 

  16. Falaleev SV, Vinogradov AS (2015) Analysis of dynamic characteristics for face gas dynamic seal. Proc Eng 106:210–217. https://doi.org/10.1016/j.proeng.2015.06.026

    Article  Google Scholar 

  17. Sun DF, Sun JJ, Ma CB et al (2019) Frequency-domain-based nonlinear response analysis of stationary ring displacement of noncontact mechanical seal. Shock Vib. https://doi.org/10.1155/2019/7082538

    Article  Google Scholar 

  18. Childs D (2018) A new structural dynamic model for pump mechanical seals vibration analysis incorporating squeeze motion of O-ring seals and general dynamic motion of the pump housing and the pump shaft. J Tribol-T ASME. https://doi.org/10.1115/1.4038867

    Article  Google Scholar 

  19. Hu S, Huang W, Liu X et al (2016) Influence analysis of secondary O-ring seals in dynamic behavior of spiral groove gas face seals. Chin J Mech Eng-En 29(3):507–514. https://doi.org/10.3901/CJME.2016.0327.039

    Article  Google Scholar 

  20. Hao M, Wang Y, Li Z et al (2018) Effects of surface topography on hydrodynamic performance of liquid film seals considering cavitation. Ind Lubr Tribol 70(6):984–992. https://doi.org/10.1108/ilt-12-2016-0321

    Article  Google Scholar 

  21. Liu W, Liu Y, Huang W et al (2013) Effect of disturbances on the dynamic performance of a wavy-tilt-dam mechanical seal. Tribol Int 64:63–68. https://doi.org/10.1016/j.triboint.2013.02.021

    Article  Google Scholar 

  22. Lebeck AO (1991) Principles and design of mechanical face seals. Wiley, Hoboken, pp 20–32

    Google Scholar 

  23. Zhao Y, Yuan S, Hu J et al (2015) Nonlinear dynamic analysis of rotary seal ring considering creep rotation. Tribol Int 82:101–109. https://doi.org/10.1016/j.triboint.2014.09.016

    Article  Google Scholar 

  24. Zhang C, Jiang X, Wang L, Sun T, Gu L (2018) Effect of surface roughness on the start-stop behavior of air lubricated thrust micro-bearings. Tribol Int 119:436–442. https://doi.org/10.1016/j.triboint.2017.11.022

    Article  Google Scholar 

  25. Patir N, Cheng HS (1979) Application of average flow model to lubrication between rough sliding surfaces. J Lubr Technol 102(2):220–229

    Article  Google Scholar 

  26. Wu C, Zheng L (1989) An average Reynolds equation for partial film lubrication with a contact factor. J Tribol-T ASME 111(1):88–91

    Google Scholar 

  27. Qiu Y, Khonsari MM (2009) On the prediction of cavitation in dimples using a mass-conservative algorithm. J Tribol-T ASME 131(4):041702. https://doi.org/10.1115/1.3176994

    Article  Google Scholar 

  28. Jackson RL, Green I (2006) A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol Int 39(9):906–914. https://doi.org/10.1016/j.triboint.2005.09.001

    Article  Google Scholar 

  29. Varney P, Green I (2016) Rough surface contact of curved conformal surfaces: an application to rotor-stator rub. J Tribol-T ASME 138(4):041401-1. https://doi.org/10.1115/1.4032786

    Article  Google Scholar 

  30. Hu ST, Brunetiere N, Huang WF et al (2018) A closed-form contact model for gas face seals during the opened operation. Ind Lubr Tribol 70(6):1110–1118. https://doi.org/10.1108/ILT-07-2017-0208

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Project Nos. 11872289 and 51775412) and National Key R&D Program of China (No. 2018YFB2000800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushuai Xu.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wu, J., Wang, Y. et al. Transient response and rub-impact phenomenon of liquid lubricated non-contacting mechanical seals during external pressure fluctuation. J Braz. Soc. Mech. Sci. Eng. 42, 428 (2020). https://doi.org/10.1007/s40430-020-02485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02485-1

Keyword

Navigation