Skip to main content
Log in

Performance of textured tool in turning of Ti–6Al–4V alloy: numerical analysis and experimental validation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Development of advanced or new cutting tool has gained attention among the research community nowadays. Due to environmental obligation, researchers are working on hybrid machining processes without cutting fluids to improve sustainability. The effect of micro-dimple-textured tool on turning of Ti–6Al–4V alloy is assessed by considering cutting force, chip morphology and chip flow angle using finite element method (FEM) in the current study. The machining simulations are performed for both flat and textured tool using DEFORM software. The simulation results show that machinability of textured tool increased (maximum reduction 16, 30 and 12% in cutting surface roughness and chip thickness, respectively) as compared to the flat tool. The simulated results are validated by performing experimental runs, and significant coherence (error % < 10) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kumar A, Maity K (2019) FEM and experimental analysis of thermal assisted machining of titanium base alloys. Measurement. https://doi.org/10.1016/j.measurement.2019.107292

    Article  Google Scholar 

  2. Xu J, Zhou L, Chen M, Ren F (2019) Experimental study on mechanical drilling of carbon/epoxy composite—Ti6Al4V stacks. Mater Manuf Process 34:715–725. https://doi.org/10.1080/10426914.2019.1594275

    Article  Google Scholar 

  3. Kumar A, Maity K (2019) Analysis of some critical aspects in hot machining of Ti-5553 superalloy: experimental and FE analysis. Def Technol 15:344–352. https://doi.org/10.1016/j.dt.2018.10.005

    Article  Google Scholar 

  4. Meng R, Deng J, Duan R et al (2019) Modifying tribological performances of AISI 316 stainless steel surfaces by laser surface texturing and various solid lubricants. Opt Laser Technol 109:401–411. https://doi.org/10.1016/j.optlastec.2018.08.020

    Article  Google Scholar 

  5. Parida AK, Maity K (2018) Numerical analysis of chip geometry on hot machining of nickel base alloy. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1418-8

    Article  Google Scholar 

  6. Parida AK (2018) Simulation and experimental investigation of drilling of Ti-6Al-4V alloy. Int J Light Mater Manuf. https://doi.org/10.1016/j.ijlmm.2018.07.001

    Article  Google Scholar 

  7. Bertolete M, Barbosa PA, Machado R et al (2018) Effects of texturing the rake surfaces of cemented tungsten carbide tools by ultrashort laser pulses in machining of martensitic stainless steel. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2407-x

    Article  Google Scholar 

  8. Xu S, Kuriyagawa T, Shimada K, Mizutani M (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng 12:33–45. https://doi.org/10.1007/s11465-017-0422-5

    Article  Google Scholar 

  9. Kumar CS, Patel SK (2018) Effect of WEDM surface texturing on Al2O3/TiCN composite ceramic tools in dry cutting of hardened steel. Ceram Int 44:2510–2523. https://doi.org/10.1016/j.ceramint.2017.10.236

    Article  Google Scholar 

  10. Arulkirubakaran D, Senthilkumar V, Dinesh S (2017) Effect of textures on machining of Ti-6Al-4V alloy for coated and uncoated tools: a numerical comparison. Int J Adv Manuf Technol 93:347–360. https://doi.org/10.1007/s00170-016-9381-y

    Article  Google Scholar 

  11. Sasi R, Kanmani Subbu S, Palani IA (2017) Performance of laser surface textured high speed steel cutting tool in machining of Al7075-T6 aerospace alloy. Surf Coatings Technol 313:337–346. https://doi.org/10.1016/j.surfcoat.2017.01.118

    Article  Google Scholar 

  12. Vasumathy D, Meena A (2017) Influence of micro scale textured tools on tribological properties at tool-chip interface in turning AISI 316 austenitic stainless steel. Wear 376–377:1747–1758. https://doi.org/10.1016/j.wear.2017.01.024

    Article  Google Scholar 

  13. Gajrani KK, Pavan Kumar Reddy R, Ravi Sankar M (2018) Tribo-mechanical and surface morphological comparison of untextured, mechanical micro-textured (MμT), and coated-MμT cutting tools during machining. Proc Inst Mech Eng Part J J Eng Tribol 2018:1–17. https://doi.org/10.1177/1350650118764975

    Article  Google Scholar 

  14. Kurniawan R, Kiswanto G, Ko TJ (2016) Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. Int J Mach Tools Manuf 106:127–140. https://doi.org/10.1016/j.ijmachtools.2016.03.007

    Article  Google Scholar 

  15. Obikawa T, Kamio A, Takaoka H, Osada A (2011) International Journal of machine tools & manufacture micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51:966–972. https://doi.org/10.1016/j.ijmachtools.2011.08.013

    Article  Google Scholar 

  16. Xing Y, Deng J, Wu Z et al (2018) Analysis of tool-chip interface characteristics of self-lubricating tools with nanotextures and WS2/Zr coatings in dry cutting. Int J Adv Manuf Technol 97:1637–1647. https://doi.org/10.1007/s00170-018-2054-2

    Article  Google Scholar 

  17. Sharma V, Pandey PM (2017) Geometrical design optimization of hybrid textured self-lubricating cutting inserts for turning 4340 hardened steel. Int J Adv Manuf Technol 89:1575–1589. https://doi.org/10.1007/s00170-016-9163-6

    Article  Google Scholar 

  18. Dinesh S, Senthilkumar V, Asokan P (2017) Experimental studies on the cryogenic machining of biodegradable ZK60 Mg alloy using micro- textured tools. Mater Manuf Process 32:979–987. https://doi.org/10.1080/10426914.2016.1221096

    Article  Google Scholar 

  19. Niketh S, Samuel GL (2018) Drilling performance of micro textured tools under dry, wet and MQL condition. J Manuf Process 32:254–268. https://doi.org/10.1016/j.jmapro.2018.02.012

    Article  Google Scholar 

  20. Ling TD, Liu P, Xiong S et al (2013) Surface texturing of drill bits for adhesion reduction and tool life enhancement. Tribol Lett 52:113–122. https://doi.org/10.1007/s11249-013-0198-7

    Article  Google Scholar 

  21. Degenhardt JA, DeVor RE, Kapoor SG (2005) Generalized groove-type chip breaker effects on drilling for different drill diameters and flute shapes. Int J Mach Tools Manuf 45:1588–1597. https://doi.org/10.1016/j.ijmachtools.2005.02.009

    Article  Google Scholar 

  22. Sahu SK, Burak Ozdoganlar O, DeVor RE, Kapoor SG (2003) Effect of groove-type chip breakers on twist drill performance. Int J Mach Tools Manuf 43:617–627. https://doi.org/10.1016/S0890-6955(02)00303-6

    Article  Google Scholar 

  23. Singh R, Manu JSD (2019) Performance evaluation of textured carbide tools under environment—friendly minimum quantity lubrication turning strategies. J Brazilian Soc Mech Sci Eng 1:1–13. https://doi.org/10.1007/s40430-019-1586-1

    Article  Google Scholar 

  24. Fatima A, Mativenga PT (2015) A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting of AISI/SAE 4140. Int J Adv Manuf Technol 78:2097–2106. https://doi.org/10.1007/s00170-015-6799-6

    Article  Google Scholar 

  25. Fatima A, Mativenga PT (2017) On the comparative cutting performance of nature-inspired structured cutting tool in dry cutting of AISI/SAE 4140. Proc Inst Mech Eng Part B J Eng Manuf 231:1941–1948. https://doi.org/10.1177/0954405415617930

    Article  Google Scholar 

  26. Kümmel J, Braun D, Gibmeier J et al (2015) Journal of Materials Processing Technology Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. J Mater Process Tech 215:62–70. https://doi.org/10.1016/j.jmatprotec.2014.07.032

    Article  Google Scholar 

  27. Sugihara T, Enomoto T (2012) Improving anti-adhesion in aluminum alloy cutting by micro stripe texture. Precis Eng 36:229–237. https://doi.org/10.1016/j.precisioneng.2011.10.002

    Article  Google Scholar 

  28. Kümmel J, Gibmeier J, Müller E et al (2014) Detailed analysis of microstructure of intentionally formed built-up edges for improving wear behaviour in dry metal cutting process. Wear 311:21–30. https://doi.org/10.1016/j.wear.2013.12.012

    Article  Google Scholar 

  29. Kim DM, Bajpai V, Kim BH, Park HW (2015) Finite element modeling of hard turning process via a micro-textured tool. Int J Adv Manuf Technol 78:1393–1405. https://doi.org/10.1007/s00170-014-6747-x

    Article  Google Scholar 

  30. Arulkirubakaran D, Senthilkumar V, Kumawat V (2016) Effect of micro-textured tools on machining of Ti-6Al-4V alloy: an experimental and numerical approach. Int J Refract Met Hard Mater 54:165–177. https://doi.org/10.1016/j.ijrmhm.2015.07.027

    Article  Google Scholar 

  31. Parida AK, Rao PV, Ghosh S (2020) Numerical analysis and experimental investigation in the machining of AISI 316 steel. Sādhanā. https://doi.org/10.1007/s12046-019-1235-5

    Article  Google Scholar 

  32. Duong NH, Lian Y (2015) Assessment of microgrooved cutting tool in dry machining of AISI 1045 steel. J ManufSci Eng 2015:137. https://doi.org/10.1115/1.4029565

    Article  Google Scholar 

  33. Durairaj S, Guo J, Aramcharoen A, Castagne S (2018) An experimental study into the effect of micro-textures on the performance of cutting tool. Int J Adv Manuf Technol 2018:1011–1030

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thanks Mr. Arnab Jyoti Sharma, Project Staff, Mechanical Engineering Department, IIT Delhi helping in drawing the CAD file, Mr. Sarat Chandra, Ph.D. scholar NIT Rourkela helping in simulation and Dr. Parag Sen, Postdoctoral Fellow, IIT Delhi for polishing the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Parida.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, A.K., Rao, P.V. & Ghosh, S. Performance of textured tool in turning of Ti–6Al–4V alloy: numerical analysis and experimental validation. J Braz. Soc. Mech. Sci. Eng. 42, 255 (2020). https://doi.org/10.1007/s40430-020-02333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02333-2

Keywords

Navigation