Skip to main content
Log in

Importance of entropy generation and infinite shear rate viscosity for non-Newtonian nanofluid

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study addresses the novel characteristics of infinite shear rate viscosity and entropy generation in magneto-mixed convective flow of cross-nanomaterial toward a stretched surface. Moreover, analysis of current research work has been prepared for Brownian moment and thermophoresis deposition. Radiation and viscous dissipation aspects are accounted. More specifically, roles of activation energy and Lorentz force on nanofluids transportation are examined. ODEs are acquired from PDEs via implementation of suitable transformations. Numerical algorithm is implemented to tackle the nonlinear system for numerical results. Discussion on rheological parameters involved in current research work is presented through graphs. Results demonstrate the significant rise in temperature and nanoparticles concentration with the intensification of Brownian moment aspects. More specially, we perceived that entropy rate is significantly affected by radiation parameter and Brinkman number. Intensification in entropy rate is observed for rising values of magnetic parameter, radiation parameter and Brinkman number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

u, v :

Velocity components

x, y :

Space coordinates

\(\rho\) :

Density of fluid

\(\nu\) :

Kinematic viscosity

\(\mu\) :

Dynamic viscosity

\(n\) :

Power law index

\(B_{0}\) :

Uniform magnetic field strength

\(\left( {\rho c} \right)_{\text{f}}\) :

Heat capacity of fluid

\(T\) :

Ratio of heat capacity

\(\left( {\rho c} \right)_{p}\) :

Effective heat capacity

\(\alpha\) :

Thermal diffusivity

\(\sigma^{**}\) :

Stefan–Boltzmann constant

\(D_{\text{T}}\) :

Thermophoresis effect

\(k_{f}\) :

Thermal conductivity

\(c_{p}\) :

Specific heat capacity

\(m^{*}\) :

Mean absorption coefficient

\(D_{\text{B}}\) :

Brownian motion

T :

Temperature

\(T_{\infty }\) :

Ambient temperature

\(C_{\infty }\) :

Ambient concentration

\(T_{w}\) :

Surface temperature

\(C_{w}\) :

Surface concentration

\(k_{\text{r}}^{2}\) :

Reaction rate

\(E_{\text{a}}\) :

Activation energy

\(\varGamma\) :

Time material constant

\(\beta^{*}\) :

Ratio of viscosities

C:

Concentration

\(m\) :

Fitted rate constant

\(c\) :

Dimensional constant

\(U_{w}\) :

Stretching velocity

\(\eta\) :

Dimensionless variable

We :

Weissenberg number

Pr :

Prandtl number

M :

Magnetic parameter

Nr :

Buoyancy ratio parameter

\(\lambda\) :

Mixed convection parameter

R :

Thermal radiation parameter

\(Nb\) :

Brownian motion parameter

\(Nt\) :

Thermophoresis parameter

\(Ec\) :

Eckert number

Sc :

Schmidt number

\(\sigma\) :

Dimensionless reaction rate

E :

Dimensionless activation energy

\(\delta\) :

Temperature difference parameter

\(\tau_{\text{w}}\) :

Wall shear stress

\(q_{\text{w}}\) :

Wall heat flux

\(f\) :

Dimensionless velocities

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(N_{\text{G}}\) :

Entropy generation rate

\(\alpha_{2}\) :

Dimensionless temperature ratio variable

\(\alpha_{1}\) :

Dimensionless concentration ratio variable

L :

Diffusive variable

Br :

Brinkman number

\(C_{fx}\) :

Skin fraction

\(Nu_{x}\) :

Local Nusselt number

\(Re_{x}\) :

Local Reynolds number

References

  1. Khan WA, Khan M (2014) Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption. PLoS ONE 9(8):e10510

    Google Scholar 

  2. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Mag Mat 369:69–80

    Article  Google Scholar 

  3. Khan M, Khan WA (2015) Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet. AIP Adv 5:107138. https://doi.org/10.1063/1.4935043

    Article  Google Scholar 

  4. Khan M, Khan WA (2016) MHD boundary layer flow of a power-law nanofluid with new mass flux condition. AIP Adv 6:025211. https://doi.org/10.1063/1.4942201

    Article  Google Scholar 

  5. Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transfer 102:766–772

    Article  Google Scholar 

  6. Khan M, Khan WA, Alshomrani AS (2016) Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect. Int J Heat Mass Transfer 101:570–576

    Article  Google Scholar 

  7. Khan M, Khan WA (2016) Steady flow of Burgers nanofluid over a stretching surface with heat generation/absorption. J Braz Soc Mech Sci Eng 38(8):2359–2367

    Article  Google Scholar 

  8. Hayat T, Rashid M, Imtiaz M, Alsaedi A (2017) MHD effects on a thermo-solutal stratified nanofluid flow on an exponentially radiating stretching sheet. J Appl Mech Tech Phys. https://doi.org/10.1134/s0021894417020043

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmad L, Khan M, Khan WA (2017) Numerical investigation of magneto-nanoparticles for unsteady 3D generalized Newtonian liquid flow. Eur Phys J Plus 132:373. https://doi.org/10.1140/epjp/i2017-11658-6

    Article  Google Scholar 

  10. Khan M, Irfan M, Khan WA (2017) Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofluid. Int J Mech Sci 130:375–382

    Article  Google Scholar 

  11. Waqas M, Ijaz Khan M, Hayat T, Alsaedi A, Imran Khan M (2017) Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion. Eur Phys J Plus 132:280. https://doi.org/10.1140/epjp/i2017-11555-0

    Article  Google Scholar 

  12. Khan M, Irfan M, Khan WA (2017) Numerical assessment of solar energy aspects on 3D magneto-Carreau nanofluid: a revised proposed relation. Int J Hydrogen Energy 42(34):22054–22065

    Article  Google Scholar 

  13. Waqas M, Khan MI, Hayat T, Alsaedi A (2017) Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results Phys 7:2489–2496

    Article  Google Scholar 

  14. Sohail A, Shah SIA, Khan WA, Khan M (2017) Thermally radiative convective flow of magnetic nanomaterial: a revised model. Results Phys 7:2439–2444

    Article  Google Scholar 

  15. Khan WA, Irfan M, Khan M, Alshomrani AS, Alzahrani AK, Alghamdi MS (2017) Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid. J Mol Liq 234:201–208

    Article  Google Scholar 

  16. Animasaun IL, Mahanthesh B, Jagun AO, Bankole TD, Sivaraj R, Shah NA, Saleem S (2018) Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO-Water nanofluid on an upper horizontal surface of a paraboloid of revolution. J Heat Transfer 141(2):022402

    Article  Google Scholar 

  17. Sheikholeslami M, Seyednezhad M (2018) Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transfer 120:772–781

    Article  Google Scholar 

  18. Waqas M, Hayat T, Alsaedi A (2018) A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering Darcy-Forchheimer relation. Appl Nanosci. https://doi.org/10.1007/s13204-018-0833-6

    Article  Google Scholar 

  19. Muhammad T, Dian-Chen Lu, Mahanthesh B, Eid Mohamed R, Ramzan M, Dar A (2018) Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys 70(3):361

    Article  MathSciNet  Google Scholar 

  20. Irfan M, Khan M, Khan WA, Ayaz M (2018) Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys Lett A 382(30):1992–2002

    Article  Google Scholar 

  21. Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2018) Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq 269:407–416

    Article  Google Scholar 

  22. Khan WA, Alshomrani AS, Alzahrani AK, Khan M, Irfan M (2018) Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring-Powell magneto-nanofluid flow. Pramana-J Phys 91:63. https://doi.org/10.1007/s12043-018-1634-x

    Article  Google Scholar 

  23. Gireesha BJ, Mahanthesh B, Thammanna GT, Sampathkumar PB (2018) Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J Mol Liq 256:139–147

    Article  Google Scholar 

  24. Amala S, Mahanthesh B (2018) Hybrid nanofluid flow over a vertical rotating plate in the presence of hall current, Nonlinear convection and heat Absorption. J Nanofluids 7(6):1138–1148

    Article  Google Scholar 

  25. Sheikholeslami M, Shehzad SA (2018) Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transfer 120:1200–1212

    Article  Google Scholar 

  26. Alshomrani AS, Zaka Ullah M, Capizzano SS, Khan WA, Khan M (2019) Interpretation of chemical reactions and activation energy for unsteady 3D flow of Eyring-Powell magneto-nanofluid. Arab J Sci Eng 44(1):579–589

    Article  Google Scholar 

  27. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq Rizwan-ul (2019) Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transfer 136:1233–1240

    Article  Google Scholar 

  28. Shruthy M, Mahanthesh B (2019) Rayleigh-bénard convection in Casson and hybrid nanofluids: an analytical investigation. J Nanofluids 8(1):222–229

    Article  Google Scholar 

  29. Sheikholeslami M, Rizwan-ulHaq A, Shafee Z, Lie YG Elaraki, Tlili I (2019) Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transfer 135:470–478

    Article  Google Scholar 

  30. Gireesha BJ, Archana M, Mahanthesh B, Prasannakumara BC (2019) Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source. Mult Mod Mater Struct 15(1):227–245

    Article  Google Scholar 

  31. Sheikholeslami M, Haq RU, Shafee A, Li Z (2019) Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J Heat Mass Transfer 130:1322–1342

    Article  Google Scholar 

  32. Khan M, Irfan M, Khan WA, Sajid M (2019) Consequence of convective conditions for flow of Oldroyd-B nanofluid by a stretching cylinder. J Braz Soc Mech Sci Eng 41:116. https://doi.org/10.1007/s40430-019-1604-3

    Article  Google Scholar 

  33. Animasaun IL, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B (2019) Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim 135(2):873–886

    Article  Google Scholar 

  34. Sheikholeslami M (2019) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  MathSciNet  Google Scholar 

  35. Abbas SZ, Khan WA, Sun H, Ali M, Irfan M, Shahzed M, Sultan F (2019) Mathematical modeling and analysis of Cross nanofluid flow subjected to entropy generation. Appl Nanosci. https://doi.org/10.1007/s13204-019-01039-9

    Article  Google Scholar 

  36. Sheikholeslami M (2019) Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 344:306–318

    Article  Google Scholar 

  37. Ali M, Khan WA, Irfan M, Sultan F, Shahzed M, Khan M (2019) Computational analysis of entropy generation for cross-nanofluid flow. Appl Nanosci. https://doi.org/10.1007/s13204-019-01038-w

    Article  Google Scholar 

  38. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z (2019) Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput Methods Appl Mech Eng 344:1–12

    Article  Google Scholar 

  39. Sultan F, Khan WA, Ali M, Shahzad M, Irfan M, Khan M (2019) Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy. Pramana-J Phys 92:21. https://doi.org/10.1007/s12043-018-1676-0

    Article  Google Scholar 

  40. Sheikholeslami M, Mahian Omid (2019) Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977

    Article  Google Scholar 

  41. Khan M, Irfan M, Khan WA (2019) Heat transfer enhancement for Maxwell nanofluid flow subject to convective heat transport. Pramana-J Phys. https://doi.org/10.1007/s12043-018-1690-2

    Article  Google Scholar 

  42. Nematpour Keshteli A, Sheikholeslami M (2019) Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq 274:516–533

    Article  Google Scholar 

  43. Khan WA, Alshomrani AS, Khan M (2016) Assessment on characteristics of heterogeneous-homogenous processes in three-dimensional flow of Burgers fluid. Results Phys 6:772–779

    Article  Google Scholar 

  44. Khan WA, Khan M, Alshomrani AS (2016) Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: applications of non-Fourier’s heat and non-Fick’s mass flux models. J Mol Liq 223:1039–1047

    Article  Google Scholar 

  45. Mahanthesh B, Gireesha BJ, Athira PR (2017) Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate. Results Phys 7:2375–2383

    Article  Google Scholar 

  46. Sohail A, Khan WA, Khan M, Shah SIA (2017) Consequences of non-Fourier’s heat conduction relation and chemical processes for viscoelastic liquid. Results Phys 7:3281–3286

    Article  Google Scholar 

  47. Hayat T, Khan MI, Waqas M, Alsaedi A, Yasmeen T (2017) Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects. Chin J Chem Eng 25(3):257–263

    Article  Google Scholar 

  48. Irfan M, Khan M, Khan WA (2018) Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: a numerical approach. Results Phys 10:107–117

    Article  Google Scholar 

  49. Khan MI, Qayyum S, Hayat T, Khan MI, Alsaedi A, Khan TA (2018) Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys Lett A 382:2017–2026

    Article  MathSciNet  Google Scholar 

  50. Khan WA, Sultan F, Ali M, Shahzad M, Khan M, Irfan M (2019) Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer. J Braz Soc Mech Sci Eng 41:4. https://doi.org/10.1007/s40430-018-1482-0

    Article  Google Scholar 

  51. Waqas M, Naz S, Hayat T, Alsaedi A (2019) Numerical simulation for activation energy impact in Darcy-Forchheimer nanofluid flow by impermeable cylinder with thermal radiation. Appl Nanosci 15:17. https://doi.org/10.1007/s13204-018-00940-z

    Article  Google Scholar 

  52. Khan WA, Ali M, Sultan F, Shahzad M, Khan M, Irfan M (2019) Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magnetofluid. Pramana-J Phys 92:16. https://doi.org/10.1007/s12043-018-1678-y

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the postdoctoral international exchange program for incoming postdoctoral students, at Beijing Institute of Technology, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Sultan or W. A. Khan.

Additional information

Technical Editor: Cezar Negrao, PhD.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, F., Khan, W.A., Ali, M. et al. Importance of entropy generation and infinite shear rate viscosity for non-Newtonian nanofluid. J Braz. Soc. Mech. Sci. Eng. 41, 439 (2019). https://doi.org/10.1007/s40430-019-1950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1950-1

Keywords

Navigation