Skip to main content
Log in

Application of meshless local Petrov–Galerkin technique to simulate two-dimensional time-fractional Tricomi-type problem

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The paper is devoted to investigate the two-dimensional time-fractional Tricomi-type equation, which describes the anomalous process of nearly sonic speed gas dynamics. An efficient numerical process, based on the combination of time stepping method and meshless local weak formulation, is performed to solve the model. Firstly, an implicit finite difference scheme is used to discrete the problem in time direction. The unconditional stability of the proposed time discretization scheme is proven. Then, a meshfree method based on the combination of local Petrov–Galerkin formulation and strong form is implemented to fully discretize the underlying problem. In our implementation, the radial point interpolation basis functions and local Heaviside step functions are used as the basis and test functions, respectively. A simple collocation process is employed to impose the Dirichlet boundary conditions directly. Finally, two numerical experiments on regular and irregular domains are presented to verify the efficiency, validity and accuracy of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vladimir V (2013) Fractional derivatives for physicists and engineers. Springer, Berlin

    MATH  Google Scholar 

  2. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  3. Podlubny I (1999) Fractional differential equations. Academic Press, SanDiego

    MATH  Google Scholar 

  4. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Boston

    MATH  Google Scholar 

  5. Povstenko Y (2015) Fractional thermoelasticity. Springer, New York

    Book  Google Scholar 

  6. Tricomi F (1923) Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rend Reale Accad Lincei Cl Sci Fis Mat Natur 5(14):134–247

    MATH  Google Scholar 

  7. Frankl F (1945) On the problems of Chaplygin for mixed sub- and supersonic flows. Bull Acad Sci USSR Ser Math 8:195–224

    Google Scholar 

  8. Bers L (1958) Mathematical aspects of subsonic and transonic gas dynamics. Wiley, New York

    MATH  Google Scholar 

  9. Morawetz C (2004) Mixed equations and transonic flow. J Hyperbolic Differ Equ 1(1):1–26

    Article  MathSciNet  Google Scholar 

  10. Nocilla S (1986) Applications and developments of the Tricomi equation in the transonic aerodynamics. Mixed Type Equ Teubner-Texte zur Math 90:216–241

    MathSciNet  MATH  Google Scholar 

  11. Kim JU (1999) An Lp a priori estimate for the Tricomi equation in the upper half space. Trans Am Math Soc 351(11):4611–4628

    Article  Google Scholar 

  12. Lupo D, Payne KR (2002) Spectral bounds for Tricomi problems and application to semilinear existence and existence with uniqueness results. J Differ Equ 184(1):139–162

    Article  MathSciNet  Google Scholar 

  13. Payne K (1996) Interior regularity of the Dirichlet problem for the Tricomi equation. J Math Anal Appl 199(1):271–292

    Article  MathSciNet  Google Scholar 

  14. Yagdjian K (2004) A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J Differ Equ 206:227–252

    Article  MathSciNet  Google Scholar 

  15. Zhang X, Liu J, Wen J, Tang B, He Y (2013) Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer Algorithms 63:143–164

    Article  MathSciNet  Google Scholar 

  16. Zhang X, Huang P, Feng X, Wei L (2013) Finite element method for two-dimensional time-fractional tricomi-type equations. J Numer Methods Partial Differ Equ 29(4):1081–1096

    Article  MathSciNet  Google Scholar 

  17. Liu J, Li H, Liu Y, Fang Z (2016) Reduced-order finite element method based on POD for fractional Tricomi-type equation. Appl Math Mech Engl Ed. https://doi.org/10.1007/s10483-016-2078-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan M, Abbaszadeh M (2017) Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput Math Appl 73(6):1270–1285

    Article  MathSciNet  Google Scholar 

  19. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific Publishing Co. Pte. Ltd., Hackensack

    Book  Google Scholar 

  20. Kansa EJ (1990) Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics I, surface approximations and partial derivative estimates. Comput Math Appl 19:127–45

    Article  MathSciNet  Google Scholar 

  21. Kansa EJ (1990) Multiquadrics a scattered data approximation scheme with applications to computational fluid dynamics II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–61

    Article  MathSciNet  Google Scholar 

  22. Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30(4):247–253

    Article  Google Scholar 

  23. Abbasbandy S, Roohani Ghehsareh H, Hashim I, Alsaedi A (2014) A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng Anal Bound Elem 47:10–20

    Article  MathSciNet  Google Scholar 

  24. Abbasbandy S, Roohani Ghehsareh H, Hashim I (2013) A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation. Eng Anal Bound Elem 37:885–898

    Article  MathSciNet  Google Scholar 

  25. Duan Y, Hon YC, Zhao W (2013) Stability estimate on meshless unsymmetric collocation method for solving boundary value problems. Eng Anal Bound Elem 37:666–672

    Article  MathSciNet  Google Scholar 

  26. Abbasbandy S, Roohani Ghehsareh H, Hashim I (2012) Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng Anal Bound Elem 36(12):1811–1818

    Article  MathSciNet  Google Scholar 

  27. Hon YC, Sarler B, Yun DF (2015) Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface. Eng Anal Bound Elem 57:2–8

    Article  MathSciNet  Google Scholar 

  28. Roohani Ghehsareh H, Etesami SK, Hajisadeghi Esfahani M (2016) Numerical investigation of electromagnetic scattering problems based on the compactly supported radial basis functions. Zeitschrift fur Naturforschung A 71(8):677–690

    Google Scholar 

  29. Yun DF, Hon YC (2016) Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng Anal Bound Elem 67:63–80

    Article  MathSciNet  Google Scholar 

  30. Liu G, Gu Y (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  31. Dereli Yilmaz (2010) Radial basis functions method for numerical solution of the modified equal width equation. Int J Comput Math 87(7):1569–1577

    Article  MathSciNet  Google Scholar 

  32. Shivanian E, Rahimi A, Hosseini M (2016) Meshless local radial point interpolation to three-dimensional wave equation with Neumann’s boundary conditions. Int J Comput Math 93(12):2124–2140

    Article  MathSciNet  Google Scholar 

  33. Shirzadi Ahmad (2017) Numerical solutions of 3D Cauchy problems of elliptic operators in cylindrical domain using local weak equations and radial basis functions. Int J Comput Math 94(2):252–262

    Article  MathSciNet  Google Scholar 

  34. Abbasbandy S, Roohani Ghehsareh H, Alhuthali M, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem 39:121–128

    Article  MathSciNet  Google Scholar 

  35. Hajisadeghi Esfahani M, Roohani Ghehsareh H, Etesami SK (2017) A meshless method for the investigation of electromagnetic scattering from arbitrary shaped anisotropic cylindrical objects. J Electromagn Waves Appl 31(5):477–494

    Article  Google Scholar 

  36. Taliee A, Dehghan M (2014) Direct meshless local Petrov–Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    Article  MathSciNet  Google Scholar 

  37. Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110

    Article  MathSciNet  Google Scholar 

  38. Mohebbi A, Abbaszadeh M, Dehghan M (2013) The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrodinger equation arising in quantum mechanics. Eng Anal Bound Elem 37:475–485

    Article  MathSciNet  Google Scholar 

  39. Liu Q, Gu Y, Zhuang P, Liu F, Nie Y (2011) An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech 48:1–12

    Article  MathSciNet  Google Scholar 

  40. Krahulec S, Sladek J, Sladek V, Hon YC (2016) Meshless analyses for time-fractional heat diffusion in functionally graded materials. Eng Anal Bound Elem 62:57–64

    Article  MathSciNet  Google Scholar 

  41. Abbaszadeh M, Mohebbi A, Dehghan M (2014) Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng Anal Bound Elem 38:72–82

    Article  MathSciNet  Google Scholar 

  42. Dehghan M, Abbaszadeh M, Mohebbi A (2015) An implicit RBF meshless approach for solving the time fractional non linear sine-Gordon and Klein–Gordon equations. Eng Anal Bound Elem 50:412–434

    Article  MathSciNet  Google Scholar 

  43. Roohani Ghehsareh H, Heydari Bateni S, Zaghian A (2015) A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng Anal Bound Elem 61:52–60

    Article  MathSciNet  Google Scholar 

  44. Shivanian E (2017) Local radial basis function interpolation method to simulate 2D fractional-time convection–diffusion–reaction equations with error analysis. Numer Methods Partial Differ Equ 33(3):974–994

    Article  MathSciNet  Google Scholar 

  45. Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):1–21

    Article  Google Scholar 

  46. Wei S, Chen W, Hon YC (2015) Implicit local radial basis function method for solving two-dimensional constant- and variable-order time fractional diffusion equations. Therm Sci 19:59–67

    Article  Google Scholar 

  47. Shivanian Elyas, Jafarabadi Ahmad (2017) Error and stability analysis of numerical solution for the time fractional nonlinear Schrodinger equation on scattered data of general-shaped domains. Numer Methods Partial Differ Equ 33(4):1043–1069

    Article  MathSciNet  Google Scholar 

  48. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    Article  MathSciNet  Google Scholar 

  49. Ghehsareh HR, Zaghian A, Zabetzadeh SM (2018) The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation. Neural Comput Appl 29(10):745–754

    Article  Google Scholar 

  50. Ghehsareh HR, Zaghian A, Raei M (2018) A local weak form meshless method to simulate a variable order time-fractional mobile-immobile transport model. Eng Anal Bound Elem 90:63–75

    Article  MathSciNet  Google Scholar 

  51. Mehdi Dehghan, Abbaszadeh Mostafa (2017) Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs. Appl Anal 96(6):936–969

    Article  MathSciNet  Google Scholar 

  52. Dehghan M, Abbaszadeh M, Deng W (2017) Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl Math Lett 73:120–127

    Article  MathSciNet  Google Scholar 

  53. Dehghan M, Abbaszadeh M (2017) Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl Numer Math 119:51–66

    Article  MathSciNet  Google Scholar 

  54. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26(2):448–479

    MathSciNet  MATH  Google Scholar 

  55. Zhang YN, Sun ZZ, Wu HW (2011) Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J Numer Anal 49:2302–2322

    Article  MathSciNet  Google Scholar 

  56. Zhang YN, Sun ZZ, Zhao X (2012) Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal 50:1535–1555

    Article  MathSciNet  Google Scholar 

  57. Sun ZZ, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56:193–209

    Article  MathSciNet  Google Scholar 

  58. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  59. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  Google Scholar 

  60. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput Model Simul Eng 3:187–196

    Google Scholar 

  61. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple and less costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3:11–51

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thankfulness to anonymous referees for their helpful constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Roohani Ghehsareh.

Additional information

Technical Editor: Jader Barbosa Jr., Ph.D.

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghehsareh, H.R., Raei, M. & Zaghian, A. Application of meshless local Petrov–Galerkin technique to simulate two-dimensional time-fractional Tricomi-type problem. J Braz. Soc. Mech. Sci. Eng. 41, 252 (2019). https://doi.org/10.1007/s40430-019-1749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1749-0

Keywords

Navigation