Skip to main content
Log in

Heat transfer in Oldroyd-B fluid flow due to an exponentially stretching wall utilizing Cattaneo–Christov heat flux model

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Here we are concerned with the Oldroyd-B fluid flow resulting from the deformation of a non-isothermal flat surface with exponentially varying velocity. The objective is to resolve the heat transfer problem by assuming an exponentially varying wall temperature. A non-Fourier model is followed that enables one to investigate the features of thermal relaxation time phenomenon. Using local similarity method, the governing system is changed to a set of locally similar equations which have been tackled by optimal homotopy analysis method. The solution profiles are obtained and elucidated for broad parameter values. The direction and amount of heat flow are governed by a parameter measuring the exponential growth/decay rate of wall temperature with horizontal distance. An important implication of this research is that thermal field is substantially altered by thermal relaxation time. Also, the change in temperature profiles with variation in other parameters become prominent as thermal relaxation time enlarges. A comparative study of current computations with the existing literature appears convincing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech 30:391–405

    Article  MATH  Google Scholar 

  2. Sajid M, Abbas Z, Javed T, Ali N (2010) Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can J Phys 88:635–640

    Article  Google Scholar 

  3. Shehzad SA, Alsaedi A, Hayat T, Alhuthali MS (2014) Thermophoresis particle deposition in mixed convection three-dimensional radiative flow of an Oldroyd-B fluid. J Taiwan Inst Chem Eng 45:787–794

    Article  Google Scholar 

  4. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow 24:390–401

    Article  MathSciNet  MATH  Google Scholar 

  5. Motsa SS, Ansari MS (2015) Unsteady boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet with variable thermal conductivity. Therm Sci 19:239–248

    Article  Google Scholar 

  6. Awad FG, Ahamed SMS, Sibanda P, Khumalo M (2015) The effect of thermophoresis on unsteady Oldroyd-B nanofluid flow over stretching surface. PLoS One 10:e0135914. https://doi.org/10.1371/journal.pone.0135914

    Article  Google Scholar 

  7. Sandeep N, Kumar BR, Kumar MSJ (2015) A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet. J Mol Liq 212:585–591

    Article  Google Scholar 

  8. Zhang Y, Zhang M, Bai Y (2016) Flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady stretching sheet. J Mol Liq 220:665–670

    Article  Google Scholar 

  9. Hayat T, Imtiaz M, Alsaedi A (2016) Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. Appl Math Mech 37:573–582

    Article  MathSciNet  MATH  Google Scholar 

  10. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T (2016) Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B 25:6. https://doi.org/10.1088/1674-1056/25/1/014701

    Google Scholar 

  11. Ahmad M, Ahmad I, Sajid M, Abbasi A (2016) Flow of an Oldroyd-B fluid past an unsteady bidirectional stretching sheet with constant temperature and constant heat flux. J Appl Fluid Mech 9:1329–1337

    Article  Google Scholar 

  12. Sandeep N, Reddy MG (2017) MHD Oldroyd-B fluid flow across a melting surface with cross diffusion and double stratification. Eur Phys J Plus 132:147. https://doi.org/10.1140/epjp/i2017-11417-9

    Article  Google Scholar 

  13. Hashmi MS, Khan N, Mahmood T, Shehzad SA (2017) Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Int J Therm Sci 111:463–474

    Article  Google Scholar 

  14. Fourier J (1822) Theorie Analytique Da La Chaleur, Paris

  15. Cattaneo C (1948) Sulla conduzionedelcalore, AttiSemin. Mat Fis Univ Modena Reggio Emilia 3:83–101

    Google Scholar 

  16. Dai W, Wang H, Jordan PM, Mickens RE, Bejan A (2008) A mathematical model for skin burn injury induced by radiation heating. Int J Heat Mass Transf 51:5497–5510

    Article  MATH  Google Scholar 

  17. Liu H, Bussmann M, Mostaghimi J (2009) A comparison of hyperbolic and parabolic models of phase change of a pure metal. Int J Heat Mass Transf 52:1177–1184

    Article  MATH  Google Scholar 

  18. Saidane A, Aliouat S, Benzohra M, Ketata M (2005) A transmission line matrix (TLM) study of hyperbolic heat conduction in biological materials. J Food Eng 68:491–496

    Article  Google Scholar 

  19. Christov CI (2009) On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  20. Straughan B (2010) Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf 53:95–98

    Article  MATH  Google Scholar 

  21. Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38:77–79

    Article  MATH  Google Scholar 

  22. Haddad SAM (2014) Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int J Heat Mass Transf 68:659–668

    Article  Google Scholar 

  23. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  MATH  Google Scholar 

  24. Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Numerical study of Cattaneo–Christov heat flux model for viscoelastic flow due to an exponentially stretching surface. PLoS One 10. https://doi.org/10.1371/journal.pone.0137363

  25. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T (2016) Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf 99:702–710

    Article  Google Scholar 

  26. Hayat T, Qayyum S, Imtiaz M, Alsaedi A (2016) MHD flow and heat transfer between coaxial rotating stretchable disks in a thermally stratified medium. PLoS One 11. https://doi.org/10.1371/journal.pone.0155899

  27. Hayat T, Qayyum S, Imtiaz M, Alsaedi A (2017) Flow between two stretchable rotating disks with Cattaneo–Christov heat flux model. Res Phys 7:126–133

    Google Scholar 

  28. Hayat T, Qayyum S, Imtiaz M, Alsaedi A (2016) Three-dimensional rotating flow of Jeffrey fluid for Cattaneo–Christov heat flux model. AIP Adv 6:025012. https://doi.org/10.1063/1.4942091

    Article  Google Scholar 

  29. Mushtaq A, Abbasbandy S, Mustafa M, Hayat T, Alsaedi A (2016) Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo–Christov heat flux model. AIP Adv 6:015208. https://doi.org/10.1063/1.4940133

    Article  Google Scholar 

  30. Malik R, Khan M, Mushtaq M (2016) Cattaneo–Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J Mol Liq 222:430–434

    Article  Google Scholar 

  31. Rubab K, Mustafa M (2016) Cattaneo–Christov heat flux model for MHD three dimensional flow of Maxwell fluid over a stretching sheet. PLoS One 11. https://doi.org/10.1371/journal.pone.0153481

  32. Li J, Zheng L, Liu L (2016) MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo–Christov heat flux effects. J Mol Liq 221:19–25

    Article  Google Scholar 

  33. Abbasi FM, Shehzad SA (2016) Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity: application of Cattaneo–Christov heat flux model. J Mol Liq 220:848–854

    Article  Google Scholar 

  34. Liu L, Zheng L, Liu F, Zhang X (2017) Heat conduction with fractional Cattaneo–Christov upper-convective derivative flux model. Int J Therm Sci 112:421–426

    Article  Google Scholar 

  35. Mustafa M, Hayat T, Alsaedi A (2017) Rotating flow of Maxwell fluid with variable thermal conductivity: an application to non-Fourier heat flux theory. Int J Heat Mass Transf 106:142–148

    Article  Google Scholar 

  36. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  37. Magyari E, Keller B (1999) Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys 32:577. https://doi.org/10.1088/0022-3727/32/5/012

    Article  Google Scholar 

  38. Elbashbeshy EMA (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53:643–651

    MATH  Google Scholar 

  39. Khan SK, Sanjayanand E (2005) Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet. Int J Heat Mass Transf 48:1534–1542

    Article  MATH  Google Scholar 

  40. Sajid M, Hayat T (2008) Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int Commun Heat Mass Transf 35:347–356

    Article  Google Scholar 

  41. Bhattacharyya K (2011) Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chin Phys Lett 28. https://doi.org/10.1088/0256-307x/28/7/074701

  42. Liu IC, Wang HH, Peng YF (2013) Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem Eng Commun 200:253–268

    Article  Google Scholar 

  43. Mustafa M, Mushtaq A, Hayat T, Alsaedi A (2015) Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet. J Taiwan Inst Chem Eng 47:43–49

    Article  Google Scholar 

  44. Weidman P (2016) Flow induced by exponential stretching and shearing plate motions. Phys Fluids 28:113602. https://doi.org/10.1063/1.4966979

    Article  Google Scholar 

  45. Ahmad R, Mustafa M, Hayat T, Alsaedi A (2016) Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet. J Magn Magn Mater 407:69–74

    Article  Google Scholar 

  46. Patil PM, Latha DN, Roy S, Momoniat E (2017) Double diffusive mixed convection flow from a vertical exponentially stretching surface in presence of the viscous dissipation. Int J Heat Mass Transf 112:758–766

    Article  Google Scholar 

  47. Merkin JH, Najib N, Bachok N, Ishak A, Pop I (2017) Stagnation-point flow and heat transfer over an exponentially stretching/shrinking cylinder. J Taiwan Inst Chem Eng 74:65–72

    Article  Google Scholar 

  48. Liao S (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  49. Liao S (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14:983–997

    Article  MathSciNet  MATH  Google Scholar 

  50. Liao SJ (2010) An optimal homotopy analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016

    Article  MathSciNet  MATH  Google Scholar 

  51. Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nanofluid. Comput Fluids 111:69–75

    Article  MathSciNet  Google Scholar 

  52. Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces. Numer Algorithm 70:43–59

    Article  MathSciNet  MATH  Google Scholar 

  53. Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2014) Heat and mass transfer of a two-layer flows of third-grade nanofluids in a vertical channel. Appl Math Comput 242:528–540

    MathSciNet  MATH  Google Scholar 

  54. Zhong X, Liao SJ (2017) On the homotopy analysis method for backward/forward-backward stochastic differential equations. Numer Algorithm 76:487–519

    Article  MathSciNet  MATH  Google Scholar 

  55. Hajmohammadi MR (2017) Cylindrical Couette flow and heat transfer properties of nanofluids; single-phase and two-phase analyses. J Mol Liq 240:45–55

    Article  Google Scholar 

  56. Hajmohammadi MR (2017) Assessment of a lubricant based nanofluid application in a rotary system. Energy Convers Manag 146:78–86

    Article  Google Scholar 

  57. Hajmohammadi MR (2017) Design and analysis of multi-scale annular fins attached to a pin fin. Int J Refrigeration. https://doi.org/10.1016/j.ijrefrig.2017.11.032

    Google Scholar 

  58. Hajmohammadi MR (2018) Optimal design of tree-shaped inverted fins. Int J Heat Mass Transf 116:1352–1360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mustafa.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, M., Hayat, T. & Alsaedi, A. Heat transfer in Oldroyd-B fluid flow due to an exponentially stretching wall utilizing Cattaneo–Christov heat flux model. J Braz. Soc. Mech. Sci. Eng. 40, 191 (2018). https://doi.org/10.1007/s40430-018-1132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1132-6

Keywords

Navigation