Skip to main content

Advertisement

Log in

Influence of antioxidants on fuel stability of Calophyllum inophyllum biodiesel and RSM-based optimization of engine characteristics at varying injection timing and compression ratio

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

‘Fuel stability’ is one of the most significant properties of biodiesel, which insists the biodiesel stability during prolonged storage period. This paper investigates the effects of commercially available and cheap synthetic antioxidants (PY—pyrogallol, PG—propyl gallate, TBHQ—tert-butylhydroxyquinone, BHT—butylated hydroxytoluene, BHA—butylated hydroxyanisole) on the accelerated oxidation stability, storage stability and thermal stability of Calophyllum inophyllum biodiesel. Characterization of biodiesel oxidation variability regarding different antioxidants was evaluated using Fourier Transform Infra-red (FTIR) spectroscopy by analyzing the FTIR spectrum regions of C–H bonds of the respective antioxidants/biodiesel blends. TBHQ dosed with pure biodiesel (B20D3) enhances the thermal stability by 12.05%, storage stability by 8.13% and oxidation stability by 25.27%, when compared to those of biodiesel blend (B20) without any antioxidant. The order of effectiveness of antioxidants at constant 1000 ppm concentration with pure biodiesel is obtained as TBHQ > PG > PY > BHT > BHA. B20D3 has been evaluated for the combined effects of varying injection timing (IT) (21°–24° BTDC) and compression ratio (CR) (16.5:1–18:1) on engine characteristics through experimental investigation and response surface methodology optimization. CR of 17.5 and IT of 23° BTDC were found to be optimal values for superior performance and lower emissions with composite desirability of 0.785.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Ref [16])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

C.I:

Calophyllum inophyllum

PY:

Pyrogallol

PG:

Propyl gallate

TBHQ:

Tert-butyl hydroxyquinone

BHT:

Butylated hydroxytoluene

BHA:

Butylated hydroxyanisole

FTIR:

Fourier transform Infra-red

TGA:

Thermo-gravimetric analyzer

OS:

Oxidation stability

TS:

Thermal stability

SS:

Storage stability

I.P:

Induction period

T ON :

Onset temperature

T MAX DGTN :

Maximum degradation temperature

T OFF :

Offset temperature

AV:

Acid value

KV:

Kinematic viscosity

RSM:

Response surface methodology

IT:

Injection timing

CR:

Compression ratio

BTDC:

Before top dead center

BSFC:

Brake specific fuel consumption

BTE:

Brake thermal efficiency

PCP:

Peak cylinder pressure

HRR:

Heat release rate

HC:

Hydrocarbon

CO:

Carbon monoxide

NO x :

Oxides of nitrogen

ASTM:

American society for testing and materials

References

  1. Shameer PM, Ramesh K, Sakthivel R, Purnachandran R (2017) Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: a review. Renew Sustain Energy Rev 67:1267–1281. doi:10.1016/j.rser.2016.09.117

    Article  Google Scholar 

  2. BP Statistical Review of World Energy; June 2016. 65th edn. https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf. Accessed 3 Aug 2017

  3. Shameer PM, Ramesh K (2017) Green technology and performance consequences of an eco-friendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio. J Mech Sci Technol 31(3):1497–1507. doi:10.1007/s12206-017-0249-3

    Article  Google Scholar 

  4. Shameer PM, Ramesh K (2017) Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NO x emission in a D.I diesel engine using thermal imager for various alternate fuel blends. Energy 118:1334–1344. doi:10.1016/j.energy.2016.11.017

    Article  Google Scholar 

  5. Pullen J, Saeed K (2012) An overview of biodiesel oxidation stability. Renew Sustain Energy Rev 16:5924–5950. doi:10.1016/j.rser.2012.06.024

    Article  Google Scholar 

  6. Yaakob Z, Narayanan BN, Padikkaparambil S, Unni KS, Akbar M (2014) A review on the oxidation stability of biodiesel. Renew Sustain Energy Rev 35:136–153. doi:10.1016/j.rser.2014.03.055

    Article  Google Scholar 

  7. Saluja RK, Kumar V, Sham R (2016) Stability of biodiesel—a review. Renew Sustain Energy Rev 62:866–881. doi:10.1016/j.rser.2016.05.001

    Article  Google Scholar 

  8. Maia ECR, Borsato D, Moreira I, Spacino KR, Rodrigues PRP, Gallina AL (2011) Study of the biodiesel B100 oxidative stability in mixture with antioxidants. Fuel Process Technol 92:1750–1755. doi:10.1016/j.fuproc.2011.04.028

    Article  Google Scholar 

  9. Yang Z, Hollebone BP, Wang Z, Yang C, Landriault M (2013) Factors affecting oxidation stability of commercially available biodiesel products. Fuel Process Technol 106:366–375. doi:10.1016/j.fuproc.2012.09.001

    Article  Google Scholar 

  10. Ryu K (2010) The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Biores Technol 101:78–82. doi:10.1016/j.biortech.2009.05.034

    Article  Google Scholar 

  11. Tang H, Wang A, Salley SO, Ng KYS (2008) The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J Am Oil Chem Soc 85(4):373–382. doi:10.1007/s11746-008-1208-z

    Article  Google Scholar 

  12. Domingos AK, Saad EB, Vechiatto WWD, Wilhelm HM, Ramos LP (2007) The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). J Braz Chem Soc 18(2):416–423. doi:10.1590/S0103-50532007000200026

    Article  Google Scholar 

  13. Sarin A, Arora R, Singh NP, Sarin R, Malhotra RK (2010) Blends of biodiesels synthesized from non-edible and edible oils: influence on the OS (oxidation stability). Energy 35(8):3449–3453. doi:10.1016/j.energy.2010.04.039

    Article  Google Scholar 

  14. Liang YC, May CY, Foon CS, Ngan MA, Hock CC, Basiron Y (2006) The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85(5):867–870. doi:10.1016/j.fuel.2005.09.003

    Article  Google Scholar 

  15. Tang H, De Guzman RC, Salley SO, Ng KYS (2008) The oxidative stability of biodiesel: effects of FAME composition and antioxidant. Lipid Technol 20(11):249–252. doi:10.1002/lite.200800065

    Article  Google Scholar 

  16. Karavalakis G, Hilari D, Givalou L, Karonis D, Stournas S (2011) Storage stability and ageing effect of biodiesel blends treated with different antioxidants. Energy 36:369–374. doi:10.1016/j.energy.2010.10.029

    Article  Google Scholar 

  17. Ileri E, Kocar G (2013) Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend. Energy Convers Manage 76:145–154. doi:10.1016/j.enconman.2013.07.037

    Article  Google Scholar 

  18. Verma P, Sharma MP, Dwivedi G (2015) Investigation of metals and antioxidants on stability characteristics of biodiesel. Mater Today Proc 2:3196–3202. doi:10.1016/j.matpr.2015.07.114

    Article  Google Scholar 

  19. Buosi GM, da Silva ET, Spacino K, Silva LRC, Ferreira BAD, Borsato D (2016) Oxidative stability of biodiesel from soybean oil: comparison between synthetic and natural antioxidants. Fuel 181:759–764. doi:10.1016/j.fuel.2016.05.056

    Article  Google Scholar 

  20. Yang J, He QS, Corscadden K, Caldwell C (2017) Improvement on oxidation and storage stability of biodiesel derived from an emerging feedstock camelina. Fuel Process Technol 157:90–98. doi:10.1016/j.fuproc.2016.12.005

    Article  Google Scholar 

  21. Kurechi T, Aizawa M, Kunugi A (1983) Studies on the antioxidants XVIII: oxidation product of tertiary butyl hydroquinone (TBHQ) (I). J Am Oil Chem Soc 60(11):1878–1882. doi:10.1007/BF02901542

    Article  Google Scholar 

  22. Atabani AE, da Silva Cesar A (2014) Calophyllum inophyllum L.—a prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew Sustain Energy Rev 37:644–655. doi:10.1016/j.rser.2014.05.037

    Article  Google Scholar 

  23. Shameer PM, Ramesh K, Sakthivel R, Purnachandran R (2017) Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by Rancimat instrument and FTIR spectroscopy. J Mech Sci Technol 31(1):455–463. doi:10.1007/s12206-016-1248-5

    Article  Google Scholar 

  24. Rashedul HK, Masjuki HH, Kalam MA, Teoh YH, How HG, Fattah IMR (2015) Effect of antioxidant on the oxidation stability and combustion–performance–emission characteristics of a diesel engine fueled with diesel–biodiesel blend. Energy Convers Manage 106:849–858. doi:10.1016/j.enconman.2015.10.024

    Article  Google Scholar 

  25. Ramalingam S, Govindasamy M, Ezhumalai M, Kaliyaperumal A (2016) Effect of leaf extract from Pongamia pinnata on the oxidation stability, performance and emission characteristics of calophyllum biodiesel. Fuel 180:263–269. doi:10.1016/j.fuel.2016.04.046

    Article  Google Scholar 

  26. Rashed MM, Kalam MA, Masjuki HH, Habibullah M, Imdadul HK, Shahin MM, Rahman MM (2016) Improving oxidation stability and NO x reduction of biodiesel blends using aromatic and synthetic antioxidant in a light duty diesel engine. Ind Crops Prod 89:273–284. doi:10.1016/j.indcrop.2016.05.008

    Article  Google Scholar 

  27. Pullen J, Saeed K (2014) Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process Technol 125:223–235. doi:10.1016/j.fuproc.2014.03.032

    Article  Google Scholar 

  28. Furlan PY, Wetzel P, Johnson S, Wedin J, Och A (2010) Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: used vegetable oil biodiesel oxidation study by FTIR. Spectrosc Lett 43:580–585. doi:10.1080/00387010.2010.510708

    Article  Google Scholar 

  29. Jain S, Sharma MPAL (2010) Stability of biodiesel and its blends: a review. Renew Sustain Energy Rev 14(2):667–678. doi:10.1016/j.rser.2009.10.011

    Article  Google Scholar 

  30. Jain S, Sharma MPAL (2011) Thermal stability of biodiesel and its blends: a review. Renew Sustain Energy Rev 15:438–448. doi:10.1016/j.rser.2010.08.022

    Article  Google Scholar 

  31. Nik WBW, Ani FN, Masjuki HH (2005) Thermal stability evaluation of palm oil as energy transport media. Energy Convers Manag 46:2198–2215. doi:10.1016/j.enconman.2004.10.008

    Article  Google Scholar 

  32. Shahidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32(1):67–103. doi:10.1080/10408399209527581

    Article  Google Scholar 

  33. McCormick RL, Ratcliff M, Moens L, Lawrence R (2007) Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process Technol 88(7):651–657. doi:10.1016/j.fuproc.2007.01.006

    Article  Google Scholar 

  34. de Guzman R, Tang H, Salley S, Ng KYS (2009) Synergistic effects of antioxidants on the oxidative stability of soybean oil- and poultry fat-based biodiesel. J Am Oil Chem Soc 86:459–467. doi:10.1007/s11746-009-1373-8

    Article  Google Scholar 

  35. Arruda TBMG, Rodrigues FEA, Arruda DTD, Ricardo NMPS, Dantas MB, de Araujo KC (2016) Chromatography, spectroscopy and thermal analysis of oil and biodiesel of sesame (Sesamum indicum)—an alternative for the Brazilian Northeast. Ind Crops Prod 91:264–271. doi:10.1016/j.indcrop.2016.07.029

    Article  Google Scholar 

  36. Vega-Lizama T, Díaz-Ballote L, Hernandez-Mezquita E, May-Crespo F, Castro-Borges P, Castillo-Atoche A, Gonzalez-Garcia G, Maldonado L (2015) Thermogravimetric analysis as a rapid and simple method to determine the degradation degree of soy biodiesel. Fuel 156:158–162. doi:10.1016/j.fuel.2015.04.047

    Article  Google Scholar 

  37. Christensen E, McCormick RL (2014) Long-term storage stability of biodiesel and biodiesel blends. Fuel Process Technol 128:339–348. doi:10.1016/j.fuproc.2014.07.045

    Article  Google Scholar 

  38. Shameer PM, Ramesh K, Sakthivel R, Purnachandran R (2016) Assessment on the influence of compression ratio on the performance, emission and combustion characteristics of diesel engine fuelled with biodiesel. Asian J Res Soc Sci Hum 6(12):344–372. doi:10.5958/2249-7315.2016.01297.1

    Google Scholar 

  39. Shameer PM, Ramesh K, Purnachandran R, Sakthivel R (2017) Effects of injection timing and injection pressure on biodiesel fuelled engine performance characteristics: a review. Asian J Res Soc Sci Hum 7(2):310–330. doi:10.5958/2249-7315.2017.00093.4

    Google Scholar 

  40. Raheman H, Ghadge SV (2008) Performance of diesel engine with biodiesel at varying compression ratio and ignition timing. Fuel 87:2659–2666. doi:10.1016/j.fuel.2008.03.006

    Article  Google Scholar 

  41. Sayin C, Gumus M (2011) Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Appl Therm Eng 31:3182–3188. doi:10.1016/j.applthermaleng.2011.05.044

    Article  Google Scholar 

  42. Shivakumar PS, Pai BR, Rao S (2011) Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Appl Energy 88:2344–2354. doi:10.1016/j.apenergy.2010.12.030

    Article  Google Scholar 

  43. Ramalingam S, Rajendran S, Nattan R (2015) Influence of injection timing and compression ratio on performance, emission and combustion characteristics of Annona methyl ester operated diesel engine. Alexandria Eng J 54(3):295–302. doi:10.1016/j.aej.2015.05.008

    Article  Google Scholar 

  44. Pandian M, Sivapirakasam SP, Udayakumar M (2011) Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Appl Energy 88:2663–2676. doi:10.1016/j.apenergy.2011.01.069

    Article  Google Scholar 

  45. Ganapathy T, Gakkhar RP, Murugesan K (2011) Optimization of performance parameters of diesel engine with Jatropha biodiesel using response surface methodology. Int J Sustain Energ 30(1):76–90. doi:10.1080/14786451.2011.594889

    Article  Google Scholar 

  46. Dhingra S, Bhushan G, Dubey KK (2013) Performance and emission parameters optimization of mahua (Madhuca indica) based biodiesel in direct injection diesel engine using response surface methodology. J Renew Sustain Energy 5:063117. doi:10.1063/1.4840155

    Article  Google Scholar 

  47. Hirkude JB, Padalkar AS (2014) Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel 119:266–273. doi:10.1016/j.fuel.2013.11.039

    Article  Google Scholar 

  48. Hosmath RS, Banapurmath NR, Khandal SV, Gaitonde VN, Basavarajappa YH, Yaliwal VS (2016) Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG). Renew Energy 93:579–590. doi:10.1016/j.renene.2016.03.010

    Article  Google Scholar 

  49. Bora BJ, Saha UK (2016) Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Appl Therm Eng 92:111–121. doi:10.1016/j.applthermaleng.2015.08.111

    Article  Google Scholar 

  50. Rajesh Kumar B, Saravanan S, Rana D, Nagendran A (2016) Combined effect of injection timing and exhaust gas recirculation (EGR) on performance and emissions of a DI diesel engine fuelled with next generation advanced biofuel–diesel blends using response surface methodology. Energy Convers Manage 123:470–486. doi:10.1016/j.enconman.2016.06.064

    Article  Google Scholar 

  51. Krishnamoorthi M, Malayalamurthi R (2017) Experimental investigation on performance, emission behavior and energy analysis of a variable compression ratio engine fueled with diesel-aegle marmelos oil–diethyl ether blends. Energy 128:312–328. doi:10.1016/j.energy.2017.04.038

    Article  Google Scholar 

  52. Shameer PM, Ramesh K (2017) Study on clean technology-assisted combustion behavior and NO x  emission using thermal imager for alternate fuel blends. Int J Environ Sci Technol. doi:10.1007/s13762-017-1353-8

    Google Scholar 

  53. Rizwanul Fattah IM, Masjuki HH, Kalam MA, Mofijur M, Abedin MJ (2014) Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers Manage 79:265–272. doi:10.1016/j.enconman.2013.12.024

    Article  Google Scholar 

  54. Rizwanul Fattah IM, Masjuki HH, Kalam MA, Wakil MA, Rashedul HK, Abedin MJ (2014) Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind Crops Prod 57:132–140. doi:10.1016/j.indcrop.2014.03.022

    Article  Google Scholar 

  55. Sathiyamoorthi R, Sankaranarayanan G (2016) Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel 174:89–96. doi:10.1016/j.fuel.2016.01.076

    Article  Google Scholar 

  56. Balaji G, Cheralathan M (2015) Experimental investigation of antioxidant effect on oxidation stability and emissions in a methyl ester of neem oil fueled DI diesel engine. Renew Energy 74:910–916. doi:10.1016/j.renene.2014.09.019

    Article  Google Scholar 

  57. Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames, vol. 13. In: Symposium (International) on combustion, pp 373–80

  58. Palash SM, Kalam MA, Masjuki HH, Arbab MI, Masum BM, Sanjid A (2014) Impacts of NO x reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energy Convers Manage 77:577–585. doi:10.1016/j.enconman.2013.10.016

    Article  Google Scholar 

  59. Najafi G, Ghobadian B, Yusaf T, Ardebili SMS, Mamat R (2015) Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy 90:1815–1829. doi:10.1016/j.energy.2015.07.004

    Article  Google Scholar 

  60. Bharadwaz YD, Rao BG, Rao VD, Anusha C (2016) Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology. Alexandria Eng J 55:1201–1209. doi:10.1016/j.aej.2016.04.006

    Article  Google Scholar 

  61. Sivaramakrishnan K (2017) Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend. Egypt J Petrol. doi:10.1016/j.ejpe.2017.03.001

    Google Scholar 

  62. Shameer PM, Ramesh K (2017) FTIR evaluation on the fuel stability of Calophyllum inophyllum biodiesel: influence of tert-butyl hydroquinone (TBHQ) antioxidant. J Mech Sci Technol 31(7):3611–3617. doi:10.1007/s12206-017-0648-5

    Article  Google Scholar 

  63. Khoobbakht G, Najafi G, Karimi M, Akram A (2016) Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Appl Therm Eng 99:1006–1017. doi:10.1016/j.applthermaleng.2015.12.143

    Article  Google Scholar 

Download references

Acknowledgement

We thank Human Resource Development Group, Council of Scientific and Industrial Research (CSIR), Delhi, India for their support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohamed Shameer.

Ethics declarations

Conflict of interest

The authors are declaring that there is no conflict of interest regarding manuscript submission.

Additional information

Technical Editor: Fernando Marcelo Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, P.M., Ramesh, K. Influence of antioxidants on fuel stability of Calophyllum inophyllum biodiesel and RSM-based optimization of engine characteristics at varying injection timing and compression ratio. J Braz. Soc. Mech. Sci. Eng. 39, 4251–4273 (2017). https://doi.org/10.1007/s40430-017-0884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0884-8

Keywords

Navigation