Skip to main content
Log in

Green technology and performance consequences of an eco-friendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This study experimentally focuses on finding the optimum blend ratio for Direct injection (D.I) diesel engine fuelled with mahua oildiesel and n-butanol- diesel without any modifications in the engine. Test fuels were prepared by choosing 8 different concentrations as B10 (10 % Biodiesel and 90 % Diesel), B20 (20 % Biodiesel and 80 % Diesel), B30 (30 % Biodiesel and 70 % Diesel), B40 (40 % Biodiesel and 60 % Diesel), BU10 (10 % n-butanol and 90 % Diesel), BU20 (20 % n-butanol and 80 % Diesel), BU30 (30 % n-butanol and 70 % Diesel), BU40 (40 % n-butanol and 60 % Diesel). Experiments were performed at constant speed and variable loads at standard injection timing of 23 Crank angle degree BTDC and standard compression ratio of 16.5:1 to determine the engine performance indicators and exhaust gas emissions such as carbon monoxide, carbon dioxide, hydrocarbon, soot content and oxides of nitrogen. The optimum blend ratio for mahua biodiesel- diesel blend and n-butanol- diesel blend were determined and compared on eco-friendly and economical basis to gain the suitable substitute fuel. The result showed that Mahua biodiesel blend is eco-friendly and economically apt alternative fuel for diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metz B., Davidson O., Bosch P., Dave R. and Meyer L., Fourth assessment report of the intergovernmental panel on climate changes, UK and New York (USA) Cambridge University Press (2007).

    Google Scholar 

  2. Mohamed Shameer P., Ramesh K., Sakthivel R. and Purnachandran R., Assessment on the influence of compression ratio on the performance, emission and combustion characteristics of diesel engine fuelled with biodiesel, Asian Journal of Research in Social Sciences and Humanities, 6 (12) (2016) 344–372, DOI NUMBER: 10.5958/2249-7315.2016. 01297.1.

    Article  Google Scholar 

  3. M. H. Jayed, H. H. Masjuki, R. Saidur, M. A. Kalam and M. I. Jahirul, Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia, Renewable and Sustainable Energy Review, 13 (2009) 2452–2462, http:// dx.doi. org/10.1016/j.rser.2009.06.023.

    Article  Google Scholar 

  4. Mohamed Shameer P. and Ramesh K., Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends, Energy, 118 (2017) 1334–1344, ISSN: 0360-5442. DOI: http:// dx.doi.org/10.1016/j.energy.2016.11.017.

    Article  Google Scholar 

  5. G. Li, S. Qian, H. Lee, Y. Hwang and R. Radermacher, Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application, Energy, 65 (2014) 675–691, http://dx.doi.org/10.1016/ j.energy.2013.12.017.

    Article  Google Scholar 

  6. P. M. Shameer, K. Ramesh, R. Sakthivel and R. Purnachandran, Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review, Renewable and Sustainable Energy Reviews, 67 (2017) 1267–1281, http://dx.doi.org/10.1016/j.rser. 2016.09.117

    Article  Google Scholar 

  7. Mohamed Shameer P., Ramesh K., Sakthivel R. and Purnachandran R., Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by rancimat instrument and FTIR spectroscopy, Journal of Mechanical Science and Technology, 31 (1) (2017) 455–463, DOI 10.1007/s12206-016-1248-5.

    Article  Google Scholar 

  8. M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez and F. J. Lopez, Exhaust emissions from a diesel engine fuelled with transesterified waste olive oil, Fuel, 82 (2003) 1311–1315, http://dx.doi.org/10.1016/S0016-2361(03)00034-6.

    Article  Google Scholar 

  9. Y. Li, X. Zhang and L. Sun, Fatty acidmethyl esters from soapstocks with potential use as biodiesel, Energy Conversion and Management, 51 (2010) 2307–2311, http://dx.doi. org/10.1016/j.enconman.2010.04.003.

    Article  Google Scholar 

  10. S. Y. No, Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 131–149, http://dx.doi.org/10.1016/j.rser.2010.08.012.

    Article  Google Scholar 

  11. F. Yasar, S. Altun and H. Adin, Fuel properties of biodiesels produced from blends of canola oil and animal tallow, Energy Education Science and Technology Part A: Energy Science and Research, 27 (1) (2011) 199–208.

    Google Scholar 

  12. L. C. Meher, D. V. Sagar and S. N. Naik, Technical aspects of biodiesel production by transesterification - A review, Renewable and Sustainable Energy Rev., 10 (3) (2005) 248–268, http://dx.doi.org/10.1016/j.rser.2004.09.002.

    Article  Google Scholar 

  13. M. Al-Sabawi, J. Chen and S. Ng, Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feed stocks: A review, Energy Fuels, 26 (9) (2012) 5355–5372, DOI: 10.1021/ef3006417.

    Article  Google Scholar 

  14. H. Raheman and S. V. Ghade, Performance of compression ignition engine with Mahua (Madhuca indica) biodiesel, Fuel, 86 (2007) 2568–2573, http://dx.doi.org/10.1016/j.fuel. 2007.02.019.

    Article  Google Scholar 

  15. S. Puhan, N. Vedaraman, G. Sankaranarayanan, V. Boppana and B. Ram, Performance and emission study of Mahua oil (Madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine, Elsevier, Renew Energy, 30 (2005) 1269–1278, http://dx.doi.org/10.1016/j.renene.2004.09.010.

    Article  Google Scholar 

  16. K. Pramanik, Properties and use of jatropha curcas oil and diesel fuel blends in CI engine, Pergamon, Renewable Energy, 28 (2003) 239–248.

    Article  Google Scholar 

  17. M. Sunita and P. Sarojini, Madhuca lonigfolia (Sapotaceae): A review of its traditional uses and nutritional properties, International Journal of Humanities and Social Science Invention, ISSN (Online): 2319-7722, ISSN (Print): 2319-7714.

  18. Y. C. Bhatt, N. S. Murthy and R. K. Datta, Use of Mahua oil as a diesel fuel extender, Journal of Institute of Engineers (India) 85 (2004) 10–14.

    Google Scholar 

  19. T. Singh and V. Kumar, Experimental investigation on the performance and emission characteristics of Mahua biodiesel in single cylinder Di engine, International Journal of Engineering Science Invention, ISSN (Online): 2319-6734, ISSN (Print): 2319-6726.

  20. M. C. Navindgi, M. Dutta and B. S. P. Kumar, Performance of a CI engine with different blends of Mahua (Madhuca longifolia) biodiesel under varying operating conditions, International Journal of Engineering and Technology, 2 (7) July (2012) ISSN: 2049-3444 (2012) - IJET Publications UK.

    Google Scholar 

  21. M. K. Ghosal, D. K. Das, S. C. Pradhan and N. Sahoo, Performance Study of diesel engine by using mahua methyl ester (biodiesel) and its blends with diesel fuel, Agricultural Engineering International: the CIGR, X (2008).

    Google Scholar 

  22. S. K. Nayaka and B. P. Pattanaika, Experimental investigation on performance and emission characteristics of a diesel engine fuelled with mahua biodiesel using additive, 4th International Conference on Advances in Energy Research 2013, ICAER 2013, DOI:10.1016/j.egypro.2014.07.298.

    Google Scholar 

  23. S. Godiganur, C. H. S. Murthy and R. P. Reddy, 6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends, Renewable Energy, 34 (2009) 2172–2177, http://dx.doi.org/ 10.1016/j.renene.2008.12.035.

    Article  Google Scholar 

  24. S. Puhan, N. Vedaraman, V. B. R. Boppan, G. Sankarnarayanan and K. Jeychandran, Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characterstics, Biomass and Bioenergy, 28 (2005) 87–93, DOI: 10.1016/j.biombioe.2004.06.002.

    Article  Google Scholar 

  25. N. Saravanan, G. Nagarajan and S. Puhan, Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend, Biomass and Bioenergy, 34 (2010) 838–843, http://dx.doi.org/10.1016/j.biombioe.2010.01.028.

    Article  Google Scholar 

  26. A. K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Energy Combustion, 33 (2007) 233–271, http://dx.doi.org/10.1016/j.pecs. 2006.08.003.

    Article  Google Scholar 

  27. N. Yilmaz, Comparative analysis of biodiesel-ethanoldiesel and biodiesel-methanol-diesel blends in a diesel engine, Energy, 40 (2012) 210–213, http://dx.doi.org/10.1016/ j.energy.2012.01.079.

    Article  Google Scholar 

  28. S. M. Sarathy, M. J. Thomson, C. Togbe, P. Dagaut, F. Halter and C. Mounaim-Rousselle, An experimental and kinetic modeling study of n-butanol combustion, Combust Flame, 156 (2009) 852–864, http://dx.doi.org/10.1016/j. combustflame.2008.11.019.

    Article  Google Scholar 

  29. O. Dogan, The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions, Fuel, 90 (2011) 2467–2472, http://dx.doi.org/10.1016/ j.fuel.2011.02.033.

    Article  Google Scholar 

  30. S. Szwaja and J. D. Naber, Combustion of n-butanol in a spark-ignition IC engine, Fuel, 89 (7) (2010) 1573–1582, http://dx.doi.org/10.1016/j.fuel.2009.08.043.

    Article  Google Scholar 

  31. B. Thanapiyawanit and J. H. Lu, Cooling effect of methanol on an n-heptane HCCI engine using a dual fuel system, International Journal of Automotive Technology, 13 (7) (2012) 1013–1021, DOI: 10.1007/s12239-012-0104-6.

    Article  Google Scholar 

  32. G. Broustail, P. Seers, F. Halter, G. Moréac and R. C. Mounaim, Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends, Fuel, 90 (2011) 1–6, http://dx.doi.org/10.1016/j.fuel.2012.10.066.

    Article  Google Scholar 

  33. E. Sukjit, J. M. Herreros, K. D. Dearn, R. G. Contreras and A. Tsolakis, The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanolediesel blends, Energy, 42 (2012) 364–374, http://dx.doi. org/10.1016/j.energy.2012.03.041.

    Article  Google Scholar 

  34. D. C. Rakopoulos, C. D. Rakopoulos, E. G. Giakoumis, A. M. Dimaratos and D. C. Kyritsis, Effects of butanol-diesel fuel blends on the performance and emissions of a highspeed DI diesel engine, Energy Conversion Management, 51 (10) (2010) 1989–1997, http://dx.doi.org/10.1016/j.enconman. 2010.02.032.

    Article  Google Scholar 

  35. D. C. Rakopoulos, D. C. Rakopoulos, D. T. Hountalas, E. C. Kakaras, E. G. Giakoumis and R. G. Papagiannakis, Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends, Fuel, 89 (10) (2010) 2781–2790, http://dx.doi.org/10.1016/j.fuel.2010.03.047.

    Article  Google Scholar 

  36. M. Karabektas and M. Hosoz, Performance and emission characteristics of a diesel engine using iso butanol-diesel fuel blends, Renewable Energy, 34 (6) (2009) 1554–1559, http://dx.doi.org/10.1016/j.renene.2008.11.003.

    Article  Google Scholar 

  37. C. D. Rakopoulos, A. M. Dimaratos, E. G. Giakoumis and D. C. Rakopoulos, Investigating the emissions during acceleration of a turbocharged diesel engine operating with biodiesel or n-butanol diesel fuel blends, Energy, 35 (2010) 5173–5184, http://dx.doi.org/10.1016/j.energy.2010.07.049.

    Article  Google Scholar 

  38. S. A. Miers, S. McConnell, T. Wallner, H. K. Ng, R. W. Carlson and J. LeFeber, Drive cycle analysis of butanol/ diesel blends in a light-duty vehicle, SAE (2008) SAE Paper No.: 2008-01-2381, DOI: 10.4271/2008-01-2381.

    Book  Google Scholar 

  39. H. Raheman and A. G. Phadatare, Diesel engine emissions and performance from blends of karanja methyl ester and diesel, Biomass and Bioenergy, 27 (2004) 393–397, http://dx.doi.org/10.1016/j.biombioe.2004.03.002.

    Article  Google Scholar 

  40. A. S. Ramadhas, C. Muraleedharan and S. Jayaraj, Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil, Renewable Energy, 30 (2005) 1700–1789, http://dx.doi.org/10.1016/j.renene.2005. 01.009.

    Google Scholar 

  41. C. W. Yu, S. Bari and A. A. Ameen, A comparison of combustion characteristics of waste cooking oil with diesel as fuel in a direct injection diesel engine, IMech E Part D, 216 (2002) 237–243.

    Article  Google Scholar 

  42. B. Choi, X. Jiang, Y. K. Kim, G. Jung, C. Lee, I. Choi and C. S. Song, Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine, Applied Energy, 146 (2015) 20–28, http://dx.doi. org/10.1016/j.apenergy.2015.02.061.

    Article  Google Scholar 

  43. R. Mohsin, Z. A. Majid, A. H. Shihnan, N. S. Nasri and Z. Sharer, Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine, Energy Conversion and Management, 88 (2014) 821–828, http://dx.doi.org/10.1016/j.enconman.2014.09.027.

    Article  Google Scholar 

  44. M. Gumus, C. Sayin and M. Canakci, The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel/diesel fuel blends, Fuel, 95 (2012) 486–494, http://dx.doi.org/10.1016/j.fuel. 2011.11.020.

    Article  Google Scholar 

  45. Z. Chen, J. Liu, Z. Han, B. Du, Y. Liu and C. Lee, Study on performance and emissions of a passenger-car diesel engine fueled with butanol-diesel blends, Energy, 55 (2013) 638–646, http://dx.doi.org/10.1016/j.energy.2013.03.054.

    Article  Google Scholar 

  46. T. Balamurugan and R. Nalini, Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel, Energy, 78 (2014) 356–363.

    Article  Google Scholar 

  47. Mohamed Shameer P., Ramesh K., Sakthivel R. and Purnachandran R., Studies on correlation between NOx and Incylinder temperature in a D.I diesel engine using FLUKE thermal imager for different alternate fuel blends, Asian Journal of Research in Social Sciences and Humanities, 6 (12) (2016) 373–389, DOI NUMBER: 10.5958/2249-7315. 2016.01298.3.

    Article  Google Scholar 

  48. N. J. Barsic and A. I. Hurmke, Performance and emission characteristics of a naturally aspirated diesel engine with vegetable oil fuels, SAE (1981) 1173–1187., DOI: 10.4271/810262.

    Google Scholar 

  49. E. Ileri and G. Kocar, Experimental investigation of the effect of fuel injection advance on engine performance and exhaust emission parameters using canola oil methyl ester in a turbocharged direct-injection diesel engine, Energy Fuel, 23 (2009) 5191–5198. DOI: 10.1021/ef9004434.

    Article  Google Scholar 

  50. Z. Sahin, O. Durgun and O. N. Aksu, Experimental investigation of n butanol/diesel fuel blends and n-butanol fumigation - Evaluation of engine performance, exhaust emissions, heat release and flammability analysis, Energy Conversion and Management, 103 (2015) 778–789, http://dx.doi.org/10.1016/j.enconman.2015.06.089.

    Article  Google Scholar 

  51. Z. Sahin and O. Aksu, Experimental investigation of the effects of using low ratio n-butanol/ diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine, Renewable Energy, 77 (2015) 279–290, http://dx.doi.org/10.1016/j.renene.2014.11.093.

    Article  Google Scholar 

  52. http://www.thealternative.in/lifestyle/biodiesel-the-future-ofsustainable-fuels/.

  53. http://www.researchgate.net/file.PostFileLoader.html?id=550da40ed11b8b542c8b4571&assetKey=AS%3A27374033 8794497%401442276190343.

  54. A. I. Hurmke and N. J. Barsic, Performance and emission characteristics of a naturally aspirated diesel engine with vegetable oil fuels (part 2), SAE (1981) 2925–2935., DOI: 10.4271/810955.

    Google Scholar 

  55. J. B. Heywood, International Combustion engines fundamentals, Network: McGraw Hill (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohamed Shameer.

Additional information

Recommended by Associate Editor Kyung Doug Min

K. Ramesh received his Ph.D. degree in Mechanical Engineering from Anna University Chennai, Tamil Nadu, India in 2013. He is currently working as Assistant Professor (Senior Grade) of Mechanical Engineering at Government College of Technology, Coimbatore, Tamil Nadu, India for a period of 11 years (2005-2016). He has 17 years of teaching experience. His research interests include energy, combustion, environmental pollution, vibration analysis and manufacturing processes.

P. Mohamed Shameer received his Post Graduate degree in Thermal Engineering from Anna University Chennai, Tamil Nadu, India in 2015. In 2009, he joined Mechanical Engineering and graduated as University Rank Holder in Anna University Chennai, Tamil Nadu, India. He is currently working as a Teaching Research Associate and doing his research (Ph.D. degree) in energy, oxidation stability and combustion at Government College of Technology, Coimbatore, Tamil Nadu, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shameer, P.M., Ramesh, K. Green technology and performance consequences of an eco-friendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio. J Mech Sci Technol 31, 1497–1507 (2017). https://doi.org/10.1007/s12206-017-0249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0249-3

Keywords

Navigation