Skip to main content
Log in

Mycorrhizal inoculation on compost substrate affects nutritional balance, water uptake and photosynthetic efficiency in Cistus albidus plants submitted to water stress

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The use of composted manure as alternative substrate can be suitable to produce ornamental potted plants. However, under water stress this substrate can result an additional stress for plants due to its physicochemical properties. In these conditions, mycorrhizae application can improve water and nutrients efficiency. The experiment was carried out in a growth chamber with a first phase (I) in which both inoculated and non-inoculated Cistus albidus L. plants at two substrates (commercial and mixtures of composted manure) were well irrigated and a second phase (II) in which the plants were submitted to water stress. Glomus iranicum (Blaszk., Kovács & Balázs) var. tenuihypharum sp. nova was well established in cistus roots, but water stress hindered mycorrhizal proliferation in compost, which resulted in plants with smaller leaf and root biomass. The plants in compost had the highest Cl, K, Na, P and Zn contents in leaf; mycorrhizae reduced the Na and increased phosphorus, especially when the substrate was well-watered. Water stress decreased leaf water potential (Ψl), and mycorrhizae induced higher Ψl values in both substrates. Compost induced leaf osmotic adjustment, lower gas exchange and photochemical quenching parameters (Fv/Fm, Y(II)) values. Mycorrhizal plants had higher Y(II) and qP values than non-inoculated plants. Compost decreased relative chlorophyll content in both phases, but in inoculated plants these values increased under water stress. C. albidus plants growing in compost maintain a good nutritional balance and efficient osmotic regulation. Under water stress, plants suffer more stress than plants in commercial substrate, as reflected by the lipid peroxidation and Pn values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol 77:197–200

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–846

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Díaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Ahanger MA, Abeer Hashem, Abd Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance, vol 2. Academic Press, New York, pp 69–95

    Chapter  Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, Garcia-Mina JM, Pozo JM, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  PubMed  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Bañón S, Miralles J, Franco JA, Ochoa J, Sánchez-Blanco MJ (2011) Effects of diluted and pure treated wastewater on the growth, physiological status and visual quality of potted lantana and polygala plants. Sci Hortic 129:869–876

    Article  Google Scholar 

  • Benito M, Masaguer A, Antonio RD, Moliner A (2005) Use of pruning waste compost as a component in soilless growing media. Bioresour Technol 96:597–603

    Article  PubMed  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Hernández JA, Roldán A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197

    Article  CAS  Google Scholar 

  • Carmona E, Abad M (2007) Aplicación del compost en viveros y semilleros. In: Moreno J, Moral R (eds) Compostaje. Ed Mundi-Prensa, Madrid, pp 397–424

    Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Rubio M, Fernandez N, Hernández JA (2013) Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4 thiazolidine-carboxylic acid treatments: effect in the proteome. Plant Cell Environ 36:640–654

    Article  PubMed  CAS  Google Scholar 

  • Comandini O, Contu M, Rinaldi AC (2006) An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16:381–395

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico J, Torrecillas A, Rodríguez P, Morte A, Sánchez-Blanco MJ (2002) Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J Agric Sci 138:387–393

    Google Scholar 

  • García-Gomez A, Bernal MP, Roig A (2002) Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresour Technol 83:81–87

    Article  PubMed  Google Scholar 

  • Gómez-Bellot MJ, Álvarez S, Castillo M, Bañón S, Ortuño MF, Sánchez-Blanco MJ (2013a) Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. J Plant Res 126:567–576

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Bellot MJ, Álvarez S, Bañón S, Ortuño MF, Sánchez-Blanco MJ (2013b) Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agric Water Manag 128:131–139

    Article  Google Scholar 

  • Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Bañón S, Sánchez-Blanco MJ (2015a) Mycorrhizal euonymus plants and reclaimed water: Biomass, water status and nutritional responses. Sci Hortic 186:61–69

    Article  CAS  Google Scholar 

  • Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Fernández Martín F, Bañón S, Sánchez-Blanco MJ (2015b) Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza 25:399–409

    Article  PubMed  CAS  Google Scholar 

  • Graceson A, Hare M, Hall N, Monaghan J (2014) Use of inorganic substrates and composted green waste in growing media for green roofs. Biosyst Eng 124:1–7

    Article  Google Scholar 

  • Gucci R, Xiloyannis C, Flore JA (1991) Gas exchange parameters water relations and carbohydrate partitioning in leaves of field-grown Prunus domestica following fruit removal. Physiol Plant 83:497–505

    Article  CAS  Google Scholar 

  • Hernández-Apaolaza L, Gascó AM, Gascó JM, Guerrero F (2005) Reuse of waste materials as growing media for ornamental plants. Bioresour Technol 96:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kasim WA (2006) Changes induced by copper and cadmium stress in the anatomy and grain yield of Sorghum bicolor (L.) Moench. Int J Agric Biol 8:123–128

    CAS  Google Scholar 

  • Kasim WA (2007) Physiological consequences of structural and ultrastructural changes induced by Zn stress in Phaseolus vulgaris. I. Growth and photosynthetic apparatus. Int J Bot 3:15–22

    Article  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, pp 36–37

    Google Scholar 

  • Larcher F, Scariot V (2009) Assessment of partial peat substitutes for the production of Camellia japonica. HortScience 44:312–316

    Google Scholar 

  • Leinonen I, Grant OM, Tagliavia CPP, Chaves MM, Jones HG (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Maes WH, Steppe K (2012) Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J Exp Bot 63:4671–4712

    Article  PubMed  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Javad M, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence, a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Medeiros TL, Rezende AV, Vieira PF et al (2007) Produção e qualidade da forragem de capim-marandú fertiirrigada com dejetos líquidos de suínos. R Bras Zootec 36:309–318

    Article  Google Scholar 

  • Morte A, Díaz G, Rodríguez P, Alarcón JJ, Sánchez-Blanco MJ (2001) Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Biol Plantarum 44:263–267

    Article  Google Scholar 

  • Navarro A, Bañón S, Conejero W, Sánchez-Blanco MJ (2008) Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environ Exp Bot 62:364–370

    Article  CAS  Google Scholar 

  • Navarro A, Bañón S, Morte A, Sánchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64

    Article  Google Scholar 

  • Pagés M, Matallana A (1984) Caracterización de las propiedades físicas en los substratos empleados en horticultura ornamental. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid

  • Patakas A, Nikolaou N, Ziozioiu E, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367

    Article  CAS  Google Scholar 

  • Pérez-Pérez JG, Robles JM, Tovar JC, Botía P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Sci Hortic 122:83–90

    Article  Google Scholar 

  • Piamonti F, Stringari G, Zorzi G (1997) Use of compost in soilless cultivation. Comp Sci Util 5:38–46

    Article  Google Scholar 

  • Rucinska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257

    Article  CAS  Google Scholar 

  • Sánchez-Blanco MJ, Rodríguez P, Morales MA, Ortuño MF, Torrecillas A (2002) Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit and recovery. Plant Sci 162:107–114

    Article  Google Scholar 

  • Sánchez-Blanco MJ, Navarro A, Álvarez S, Bañón S (2009) Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J Plant Physiol 166:467–476

    Article  PubMed  CAS  Google Scholar 

  • Saura-Mas S, Lloret F (2007) Leaf and shoot water content and leaf dry matter content of mediterranean woody species with different post-fire regenerative strategies. Ann Bot 99:545–554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  PubMed  CAS  Google Scholar 

  • Sieverding E (1983) Manual de métodos para la investigación de la micorriza vesículo -arbuscular en el laboratorio. Centro Internacional de Agricultura Tropical (CIAT), Cali

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Vicente-Sánchez J, Nicolás E, Pedrero F, Alarcón JJ, Maestre-Valero JF, Fernández F (2014) Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24:339–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Seneca Foundation of Murcia (Project 19903/GERM/15). Many thanks are to Pilar Bernal of the Sustainability of Soil–Plant Systems Group of CEBAS-CSIC for providing the compost substrate and to Symborg, S.L. for providing Glomus iranicum mycorrhizae, both used in this study.

Author information

Authors and Affiliations

Authors

Contributions

MFO performed the experiment and wrote the article. BL made some measurements and all the figures and tables and ordered all the references. JAH wrote all the information related to photosynthesis and chlorophyll fluorescence and lipid peroxidation. MJ Sánchez-Blanco designed, instructed the research work and wrote the article. The four authors were involved in data interpretation and paper preparing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to María Jesús Sánchez-Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortuño, M.F., Lorente, B., Hernández, J.A. et al. Mycorrhizal inoculation on compost substrate affects nutritional balance, water uptake and photosynthetic efficiency in Cistus albidus plants submitted to water stress. Braz. J. Bot 41, 299–310 (2018). https://doi.org/10.1007/s40415-018-0457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-018-0457-9

Keywords

Navigation