Skip to main content
Log in

Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?

  • Research Article
  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

In the current scenario, Lake Urmia, one of the vastest hyper saline lakes on the Earth, has been affected by serious environmental degradation. Using different satellite images and observational data, this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia, such as population growth, excessive dam construction, low irrigation water use efficiency, poor water resources management, increased sediment flow into the lake, and lack of political and legal frameworks. The results indicated that between 1970 and 1997, the process of change in Lake Urmia was slow; however; the shrinkage was faster between 1998 and 2018, with about 30.00% of the lake area disappearing. As per the findings, anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought; the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake’s surface. These challenges have serious implications for water resources management in Lake Urmia Basin. Therefore, we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin. This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour M, Nazaridoust A. 2007. Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach. International Journal of Environmental Studies, 64(2): 161–169.

    Article  Google Scholar 

  • Acharya T D, Lee D H, Yang I T, et al. 2016. Identification of water bodies in a Landsat 8 OLI image using a J48 decision tree. Sensors-Basel, 16(7): 1075, doi: https://doi.org/10.3390/s16071075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Acharya T D, Subedi A, Lee D H. 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18(8): 2580, doi: https://doi.org/10.3390/s18082580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adger W N. 2000. Social and ecological resilience: are they related? Progress in Human Geography, 24(3): 347–364.

    Article  Google Scholar 

  • AghaKouchak A, Norouzi H, Madani K, et al. 2015. Aral Sea syndrome desiccates Lake Urmia: Call for action. Journal of Great Lakes Research, 41(1): 307–311.

    Article  Google Scholar 

  • AghaKouchak A, Mirchi A, Madani K, et al. 2021. Anthropogenic drought: definition, challenges, and opportunities. Reviews of Geophysics, 59(2): e2019RG000683, doi: https://doi.org/10.1029/2019RG000683.

    Article  Google Scholar 

  • Ahmadaali J, Barani G A, Qaderi K, et al. 2018. Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake basin, Iran. Journal of Water, 10(2): 160, doi: https://doi.org/10.3390/w10020160.

    Article  Google Scholar 

  • Ahmadi A, Abbaspour M, Arjmandi R, et al. 2016. Resilient approach toward urban development in lake catchments, case of Lake Urmia. Scientia Iranica, 23(4): 1627–1632.

    Article  Google Scholar 

  • Ahmadzadeh Kokya T, Pejman A, Mahin Abdollahzadeh E, et al. 2011. Evaluation of salt effects on some thermodynamic properties of Urmia Lake water. International Journal of Environmental Research, 5(2): 343–348.

    CAS  Google Scholar 

  • Alborzi A, Mirchi A, Moftakhari H, et al. 2018. Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts, Environmental Research Letters, 13(8): 084010, doi: https://doi.org/10.1088/1748-9326/aad246.

    Article  Google Scholar 

  • Angelidis P, Maris F, Kotsovinos N, et al. 2012. Computation of drought index SPI with alternative distribution functions. Water Resources Management, 26: 2453–2473.

    Article  Google Scholar 

  • Awange J L, Mpelasoka F, Goncalves R M. 2016. When every drop counts: analysis of droughts in Brazil for the 1901–2013 period. Science of The Total Environment, 566–567: 1472–1488.

    Article  PubMed  Google Scholar 

  • Balkanlou K R, Müller B, Cord A F, et al. 2020. Spatiotemporal dynamics of ecosystem services provision in a degraded ecosystem: A systematic assessment in the Lake Urmia basin, Iran. Science of The Total Environment, 716: 137100, doi: https://doi.org/10.1016/j.scitotenv.2020.137100.

    Article  CAS  PubMed  Google Scholar 

  • Davis C. 2013. SPSS for Applied Sciences: Basic Statistical Testing. Melbourne: CSIRO Publishing, 1–175.

    Book  Google Scholar 

  • de Bruijn K M. 2004. Resilience and flood risk management. Water Policy, 6(1): 53–66.

    Article  Google Scholar 

  • Dehghanipour A H, Panahi D M, Mousavi H, et al. 2020. Effects of water level decline in Lake Urmia, Iran, on local climate conditions. Water, 12(8): 2153, doi: https://doi.org/10.3390/w12082153.

    Article  Google Scholar 

  • Delju A H, Ceylan A, Piguet E, et al. 2013. Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and Applied Climatology, 111(1–2): 285–296.

    Article  Google Scholar 

  • Department of Environment of Iran. 2019. Urmia Lake Challenges, Actions, and the way forward (1st ed.). [2019-04-28]. https://www.ulrp.ir/wp-content/uploads/2019/04/node_1420.pdf.

  • Edwards D C, McKee T B. 1997. Characteristics of 20th century drought in the United States at multiple time scales. Atmospheric Science Paper, 634: 1–30.

    Google Scholar 

  • Emami F, Koch M. 2018. Agricultural water productivity-based hydro-economic modeling for optimal crop pattern and water resources planning in the Zarrine River basin, Iran, in the wake of climate change. Sustainability, 10(11): 3953, doi: https://doi.org/10.3390/su10113953.

    Article  Google Scholar 

  • Fang G H, Yang J, Chen Y N, et al. 2015. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6): 2547–2559.

    Article  Google Scholar 

  • Farahmand A, AghaKouchak A. 2015. A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76: 140–145.

    Article  Google Scholar 

  • Feyisa G L, Meilby H, Fensholt R, et al. 2014. Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23–35. Gao B C. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257–266.

    Google Scholar 

  • Garousi V, Najafi A, Samadi A, et al. 2013. Environmental crisis in Lake Urmia, Iran: a systematic review of causes, negative consequences and possible solutions. In: Proceedings of the 6th International Perspective on Water Resources & the Environment (IPWE). Izmir, Turkey, doi: https://doi.org/10.13140/RG.2.1.4737.0088.

  • Gersonius B. 2008. Can resilience support integrated approaches to urban drainage management? In: 11th International Conference on Urban Drainage. Edinburgh, Scotland, UK.

  • Ghale Y A G, Altunkaynak A, Unal A. 2018. Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis. Water Resources Management, 32(1): 325–337.

    Article  Google Scholar 

  • Ghale Y A G, Baykara M, Unal A. 2019. Investigating the interaction between agricultural lands and Urmia Lake ecosystem using remote sensing techniques and hydro-climatic data analysis. Agricultural Water Management, 221(20): 566–579.

    Article  Google Scholar 

  • Gholampour A, Nabizadeh R, Hassanvand M S, et al. 2015. Characterization of saline dust emission resulted from Urmia Lake drying. Journal of Environmental Health Science and Engineering, 13: 82, doi: https://doi.org/10.1186/s40201-015-0238-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohari A, Mirchi A, Madani K. 2017. System dynamics evaluation of climate change adaptation strategies for water resources management in Central Iran. Water Resources Management, 31(5): 1413–1434.

    Article  Google Scholar 

  • Golian S, Mazdiyasni O, AghaKouchak A. 2014. Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119(3–4): 679–688.

    Google Scholar 

  • Gringorten I I. 1963. A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3): 813–814.

    Article  Google Scholar 

  • Hao Z C, AghaKouchak A, Nakhjiri N, et al. 2014. Global integrated drought monitoring and prediction system. Scientific Data, 1: 140001, doi: https://doi.org/10.1038/sdata.2014.1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassani A, Azapagic A, D’Odorico P, et al. 2020. Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change. Science of The Total Environment, 703: 134718, doi: https://doi.org/10.1016/j.scitotenv.2019.134718.

    Article  CAS  PubMed  Google Scholar 

  • Hayes M, Svoboda M, Wall N, et al. 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4): 485–488.

    Article  Google Scholar 

  • Hemmati M, Ahmadi H, Hamidi S A, et al. 2021. Environmental effects of the causeway on water and salinity balance in Lake Urmia. Regional Studies in Marine Science, 44: 101756, doi: https://doi.org/10.1016/j.rsma.2021.101756.

    Article  Google Scholar 

  • Hossein Mardi A, Khaghani A, MacDonald A B, et al. 2018. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Science of The Total Environment, 633: 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Moghari S M, Araghinejad S, Tourian M J, et al. 2018. Quantifying the impacts of human water use and climate variations on recent drying of Lake Urmia basin: the value of different sets of spaceborne and in-situ data for calibrating a hydrological model. Hydrology and Earth System Sciences, 24(4): 1939–1956.

    Article  Google Scholar 

  • Jang D. 2018. Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water, 10(3): 283, doi: https://doi.org/10.3390/w10030283.

    Article  Google Scholar 

  • Khazaei B, Khatami S, Alemohammad H, et al. 2018. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 569: 203–217.

    Article  Google Scholar 

  • Kinnear P R, Gray C D. 2011. IBM SPSS Statistics 18 Made Simple. Hove, East Sussex: Psychology Press, 120–600.

    Google Scholar 

  • Kremelberg D. 2010. Practical statistics: A quick and easy guide to IBM® SPSS® Statistics, STATA, and other statistical software. Sauzendoaks, California: SAGE publications, 1–528.

    Google Scholar 

  • Lake Urmia Restoration Program. 2014. Lake Urmia, Causes of Drought and Possible Threats. Official Report. Tehran, Iran: Lake Urmia Revival Headquarters. (in Persian)

    Google Scholar 

  • Lévite H, Sally H, Cour J. 2003. Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model. Physics and Chemistry of the Earth, Parts A/B/C, 28(20–27): 779–786.

    Article  Google Scholar 

  • Lyon J G, Yuan D, Lunetta R S, et al. 1998. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2): 143–150.

    Google Scholar 

  • Madani K. 2014. Water management in Iran: What is causing the looming crisis? Journal of Environmental Studies and Sciences, 4: 315–328.

    Article  Google Scholar 

  • Madani K. 2019. The value of extreme events: What doesn’t exterminate your water system makes it more resilient. Journal of Hydrology, 575: 269–272.

    Article  Google Scholar 

  • McFeeters S K. 2013. Using the Normalized Difference Water Index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7): 3544–3561.

    Article  Google Scholar 

  • McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology. 17–22 January 1993. Anaheim, California, USA, 179–184.

  • McKee T B, Doesken N J, Kleist J. 1995. Drought monitoring with multiple time scales. In: 9th Conference on Applied Climatology. 15–22 January 1995. Dallas: American Meteorological Society, 233–236.

    Google Scholar 

  • Mishra A K, Singh V P. 2010. A review of drought concepts. Journal of Hydrology, 391(1–2): 204–216.

    Google Scholar 

  • Mohammadi Hamidi S, Nazmfar H, Rezayan A, et al. 2020. Futurology of the economic drivers of Urmia Lake water level fluctuations on the spatial unbalanced. The Journal of Spatial Planning, 24(4): 69–97.

    Google Scholar 

  • Mohammadi Hamidi S, Nazmfar H, Fürst C, et al. 2021. Water level decline at Iran’s Lake Urmia: changing population dynamics. Environmental Hazards, 21(3): 254–273.

    Article  Google Scholar 

  • Mondejar J P, Tongco A F. 2019. Near infrared band of Landsat 8 as water index: a case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustainable Environment Research, 29(1): 16, doi: https://doi.org/10.1186/s42834-019-0016-5.

    Article  CAS  Google Scholar 

  • Moradian S, Taleai M, Javadi G H. 2019. A decision support system for water allocation in water scarce basins. Remote Sensing & GIS, 11(1): 19–32.

    Article  Google Scholar 

  • Moradian S, Yazdandoost F. 2021. Seasonal meteorological drought projections over Iran using the NMME data. Natural Hazards, 108(1): 1089–1107.

    Article  Google Scholar 

  • Morid S, Smakhtin V, Moghaddasi M. 2006. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7): 971–985.

    Article  Google Scholar 

  • Naji T A H. 2018. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. International Journal of Physics: Conference Series, 1003(1): 012083, doi: https://doi.org/10.1088/1742-6596/1003/1/012083.

    Google Scholar 

  • Nazif S, Karamouz M. 2009. Algorithm for assessment of water distribution system’s readiness: planning for disasters. Journal of Water Resources Planning and Management, 135(4): 244–252.

    Article  Google Scholar 

  • Nhu V H, Mohammadi A, Shahabi H, et al. 2020. Monitoring and assessment of water level fluctuations of the Lake Urmia and its environmental consequences using multitemporal Landsat 7 ETM+ images. International Journal of Environmental Research and Public Health, 17(12): 4210, doi: https://doi.org/10.3390/ijerph17124210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettorelli N. 2013. The normalized difference vegetation index. Oxford: Oxford University Press, 24–193.

    Book  Google Scholar 

  • Purkey D R, Huber-Lee A, Yates D N, et al. 2007. Integrating a climate change assessment tool into stakeholder-driven water management decision-making processes in California. Water Resources Management, 21(1): 315–329.

    Article  Google Scholar 

  • Rahimi A, Breuste J. 2021. Why is Lake Urmia drying up? Prognostic modeling with land-use data and artificial neural network. Frontiers in Environmental Science, 9: 603916, doi: https://doi.org/10.3389/fenvs.2021.603916.

    Article  Google Scholar 

  • Richter B D, Brown J D, DiBenedetto R, et al. 2017. Opportunities for saving and reallocating agricultural water to alleviate water scarcity. Water Policy, 19(5): 886–907.

    Article  Google Scholar 

  • Sachs J, Kroll C, Lafortune G, et al. 2021. Sustainable Development Report 2021. Cambridge: Cambridge University Press, 2–9.

    Book  Google Scholar 

  • Salvador C, Nieto R, Linares C, et al. 2019. Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. Science of The Total Environment, 662: 121–133.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Gonda R, Transiskus S. 2021. Environmental degradation at Lake Urmia (Iran): exploring the causes and their impacts on rural livelihoods. GeoJournal, 86: 2149–2163.

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, et al. 2020. GPCC full data monthly product version 2020 at 1.0°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Deutscher Wetterdienst: Global Precipitation Climatology Centre (GPCC), doi: https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_100.

  • Schulz S, Darehshouri S, Hassanzadeh E, et al. 2020. Climate change or irrigated agriculture — what drives the water level decline of Lake Urmia. Scientific Reports, 10(1): 236, doi: https://doi.org/10.1038/s41598-019-57150-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Steinemann A C, Lettenmaier D P. 2011. Drought monitoring for Washington State: indicators and applications. Journal of Hydrometeorology, 12(1): 66–83.

    Article  Google Scholar 

  • Sima S, Rosenberg D E, Wurtsbaugh W A, et al. 2021. Managing Lake Urmia, Iran for diverse restoration objectives: Moving beyond a uniform target lake level. Journal of Hydrology: Regional Studies, 35: 100812, doi: https://doi.org/10.1016/j.ejrh.2021.100812.

    Google Scholar 

  • Sobhani B, Zengir V S, Kianian M K. 2019. Drought monitoring in the Lake Urmia basin in Iran. Arabian Journal of Geosciences, 12(15): 448, doi: https://doi.org/10.1007/s12517-019-4571-1.

    Article  Google Scholar 

  • Stephens M A. 1974. EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69(347): 730–737.

    Article  Google Scholar 

  • Tabrizi J S, Farahbakhsh M, Sadeghi-Bazargani H, et al. 2020. Health consequences of Lake Urmia in crisis in the disaster area: a pilot study. Disaster Medicine and Public Health Preparedness, 14(4): 442–448.

    Article  PubMed  Google Scholar 

  • Tahmasebi Birgani Y, Yazdandoost F, Moghadam M. 2013. Role of resilience in sustainable urban stromwater management. Scientific Professional Quarterly, 1(1): 42–50.

    Google Scholar 

  • Tahmasebi Birgani Y, Yazdandoost F. 2014. A framework for evaluating the persistence of urban drainage risk management systems. Journal of Hydroenvironment Research, 8(4): 330–342.

    Google Scholar 

  • Tayia A, Madani K. 2017. Resilient transboundary water management institutions. World Environmental and Water Resources Congress, doi: https://doi.org/10.1061/9780784480595.055.

  • Teutschbein C, Seibert J. 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456: 12–29.

    Article  Google Scholar 

  • Thom H C S. 1958. A note on the gamma distribution. Monthly Weather Review, 86(4): 117–122.

    Article  Google Scholar 

  • Torabi Haghighi A, Fazel N, Hekmatzadeh A A, et al. 2018. Analysis of effective environmental flow release strategies for Lake Urmia restoration. Water Resources Management, 32(11): 3595–3609.

    Article  Google Scholar 

  • Tourian M J, Elmi O, Chen Q, et al. 2015. A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment, 156: 349–360.

    Article  Google Scholar 

  • Urmia Lake Restoration National Committee. 2015. Necessity of Lake Urmia resuscitation, causes of drought and threats. Report Note ULRP-6-4-3-Rep 1. Tehran, Iran.

  • Verma J P. 2012. Data Analysis in Management with SPSS Software. New Delhi: Springer Science & Business Media.

    Google Scholar 

  • Vogel R M, Sieber J, Archfield S A, et al. 2007. Relations among storage, yield, and instream flow. Water Resources Research, 43(5): W05403, doi:https://doi.org/10.1029/2006wr005226.

    Article  Google Scholar 

  • Wang X B, Xie S P, Zhang X L, et al. 2018. A robust multi-band water index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 68: 73–91.

    Article  CAS  Google Scholar 

  • Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (NDWI). Journal of Remote Sensing, 9(5): 589–595. (in Chinese with English Abstract)

    Google Scholar 

  • Xu L Y, Xie X D, Li S. 2013. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environmental Pollution, 178: 102–114.

    Article  CAS  PubMed  Google Scholar 

  • Yates D, Sieber J, Purkey D, et al. 2005. WEAP21—A demand-, priority-, and preference-driven water planning model Part 1: Model characteristics. Water International, 30(4): 487–500.

    Article  CAS  Google Scholar 

  • Yazdandoost F, Moradian S, Izadi A, Aghakouchak A. 2020a. Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250: 105369, doi: https://doi.org/10.1016/j.atmosres.2020.105369.

    Article  Google Scholar 

  • Yazdandoost F, Moradian S, Izadi A. 2020b. Evaluation of water sustainability under a changing climate in Zarrineh River Basin, Iran. Water Resources Management, 34(15): 4831–4846.

    Article  Google Scholar 

  • Yazdandoost F, Moradian S. 2021. Climate change impacts on the streamflow of Zarrineh River, Iran. Journal of Arid Land, 13(9): 891–904.

    Article  Google Scholar 

  • Zarghami M, Abdi A, Babaeian I, et al. 2011. Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change, 78(3–4): 137–146.

    Article  Google Scholar 

  • Zarrineh N, Abad M A N. 2014. Integrated water resources management in Iran: Environmental, socio-economic and political review of drought in Lake Urmia. International Journal of Water Resources and Environmental Engineering, 6(1): 40–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sogol Moradian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams Ghahfarokhi, M., Moradian, S. Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?. J. Arid Land 15, 424–438 (2023). https://doi.org/10.1007/s40333-023-0054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-023-0054-z

Keywords

Navigation