Skip to main content
Log in

Analysis of co-located measurements made with a LaCoste&Romberg Graviton-EG gravimeter and two superconducting gravimeters at Strasbourg (France) and Yebes (Spain)

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Two experiments of intercomparison between the LaCoste&Romberg Graviton-EG1194 spring gravimeter and the superconducting gravimeters SG-026 and OSG-064, operating respectively at J9-Strasbourg (France) and CDT-Yebes (Spain), were analyzed. The main objective was to check the instrumental response of the spring meter, both in amplitude and phase as well as its time stability. A general conclusion is that normalization factors have been obtained with a similar ratio for main diurnal constituent O1 at both observing sites. The accuracy of scale factors was determined at the level of 0.03 % (at J9-Strasbourg) and 0.1 % (at CDT-Yebes). For the semidiurnal constituent M2, slight differences were found at J9-Strasbourg, which would require further investigations. Site effects were also demonstrated by considering the different response of the spring gravimeter to tilts and atmospheric pressure variations at both sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnew DC (2007) Earth tides. In: Herring TA (ed) Treatise on geophysics. Elsevier, New York, pp 163–195

    Chapter  Google Scholar 

  • Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion of deformation and gravity changes in a horizontally layered half space: evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy), Earth Planet. Sci Lett 272:181–188. doi:10.1016/j.epsl.2008.04.040

    Google Scholar 

  • Arnoso J, Fernandez J, Vieira R (2001) Interpretation of tidal gravity anomalies in Lanzarote, Canary Islands. J Geodyn 31:341–354

    Article  Google Scholar 

  • Arnoso J, Vieira R, Velez EJ, Van Ruymbeke M, Venedikov AP (2001) Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote, Spain). J Geod Soc Jpn 47:70–75

    Google Scholar 

  • Arnoso J, Benavent M, Bos MS, Montesinos FG, Vieira R (2011) Verifying the body tide at the Canary Islands using tidal gravimetry observations. J Geodyn 51:358–365

    Article  Google Scholar 

  • Baker TF, Bos MS (2003) Validating earth and ocean tide models using tidal gravity measurements. Geophys J Int 152(2):468–485

    Article  Google Scholar 

  • Battaglia M, Hill DP (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study. Tectonophysics 471:45–57. doi:10.1016/j.tecto.2008.09.040

    Article  Google Scholar 

  • Berrino G, Corrado G, Riccardi U (2006) On the capability of recording gravity stations to detect signals coming from volcanic activity: the case of Vesuvius. J Vol Geoth Res 150:270–282

    Article  Google Scholar 

  • Boy J-P, Gegout P, Hinderer J (2002) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545

    Article  Google Scholar 

  • Calvo M, Córdoba B, Serna JM, Rosat S, López J (2012) Presentation of the new Spanish Gravimeter Station: Yebes. Geophys. Res. Abs., EGU, 2012, Vienna.

  • Carbone D, Budetta G, Greco F, Zuccarello L (2007) A data sequence acquired at Mt. Etna during the 2002–2003 eruption highlights the potential of continuous gravity observations as a tool to monitor and study active volcanoes. J Geodyn 43:320–329. doi:10.1016/j.jog.2006.09.012

    Article  Google Scholar 

  • Córdoba B, Serna JM (2013) Cálculo del nivel de ruido de la estación gravimétrica de Yebes a partir de los datos del Gravímetro Superconductor SG064. Tech. rep. numb. IT-CDT2013-12, 12pp.

  • Córdoba B, Calvo M, López J, Serna JM (2013) The new Earth Tide Station in Spain; Yebes. 17th Internacional Symposium on Earth Tides, Military University of Technology, Warsaw, Poland, 04/2013.

  • Creutzfeldt B, Güntner A, Thoss H, Merz B, Wziontek H (2010) Measuring the effect of local water storage changes on in situ gravity observations: case study of the Geodetic Observatory Wettzell. Germ Water Resour Res 46:W08531. doi:10.1029/2009WR008359

    Google Scholar 

  • Crossley D, Hinderer J (1995) Cahiers du Centre Europ. de Geodyn et de Seism 11:244–274

    Google Scholar 

  • Crossley D, Jensen OG, Hinderer J (1995) Effective barometric admittance and gravity residuals. Phys Earth Planet Interstn 90:221–241

    Article  Google Scholar 

  • Crossley D, Hinderer J, Casula G, Francis O et al (1999) Network of superconducting gravimeters benefits a number of disciplines EOS. Trans Am Geophys Union 80:121–126

    Article  Google Scholar 

  • Crossley D, Hinderer J, Boy JP (2005) Time variation of the European gravity field from superconducting gravimeters. Geophys J Int 161:257–264. doi:10.1111/j.1365-246X.2005.02586.x

    Article  Google Scholar 

  • Dehant V, Defraigne P, Wahr JM (1999) Tides for a convective Earth. J Geophys Res 104:1035–1058

    Article  Google Scholar 

  • Dierks O, Neumeyer J (2002) Comparison of Earth tides analysis programs. Bull d’Informations des marees terr 135:10669–10688

    Google Scholar 

  • Ducarme B, Vandercoilden L, Venedikov AP (2006) Estimation of the precisión by the tidal analysis programs ETERNA and VAV. Bull d’Informations des marees terr 141:11189–11200

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • El-Gelil MA, Pagiatakis S, El-Rabbany A (2008) Least squares response atmospheric admittance for superconducting gravimeter noise reduction. Phys Earth Planet Int 170:24–33

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10:761–797

    Article  Google Scholar 

  • Gottsmann J, Battaglia M (2008) Caldera volcanism: analysis, modeling and response, developments in volcanology. In: Gottsmann J, Marti M (eds) Deciphering causes of unrest at explosive collapse calderas: recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies, vol 10. Elsevier, New York, pp 417–446

    Google Scholar 

  • Hartmann T, Wenzel HG (1995) The hw95 tidal potential catalogue. Geophys Res Lett 22(24):3553–3556

    Article  Google Scholar 

  • Hinderer J, Crossley D, Warburton RJ (2007) Superconducting gravimetry. In: Treatise on geophysics 3 (Geodesy), Elsevier, New York, pp. 65–122.

  • Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210–a Bayesian approach. Geophys J Int 151(3):867–878

    Article  Google Scholar 

  • Kroner C, Dierks O, Neumeyer J, Wilmes H (2005) Analysis of observations with dual sensor superconducting gravimeters. Phys Earth Planet Int 153:210–219. doi:10.1016/j.pepi.2005.07.002

    Article  Google Scholar 

  • LaCoste and Romberg LLC (2002) Graviton-EG user’s manual. Revision 1(8):51

  • Longuet-Higgins MS (1950) A theory of the origin of microseisms. Phil Trans R Soc Lond A243:1–35

    Article  Google Scholar 

  • Meurers B (2002) Aspects of gravimeter calibration by time domain comparison of gravity records. Bull Inf des Marées Terr 135:10643–10650

    Google Scholar 

  • Meurers B (2012) Superconducting gravimeter calibration by colocated gravity observations: results from GWRC025. J Geophys Int doi:10.1155/2012/954271

  • Montesinos FG, Camacho AG, Nunes JC, Oliveira CS, Vieira R (2003) A 3D gravity model for a volcanic crater in Terceira Island (Azores). Geophys J Int 154:1–14

    Article  Google Scholar 

  • Montesinos FG, Arnoso J, Benavent M, Vieira R (2006) The crustal structure of El Hierro (Canary Islands) from 3D gravity inversion. J Volcanol Geotherm Res 150(1–3):283–299

    Article  Google Scholar 

  • Pálinkás V (2006) Precise tidal measurements by spring gravimeters at the station Pecný. J Geodyn 41:14–22

    Article  Google Scholar 

  • Papp G, Szucs E, Battha L (2012) Preliminary analysis of the connection between ocean dynamics and the noise of gravity tide observed at the Sopronbanfalva Geodynamical Observatory. Hungary J Geodyn 61:47–56

    Article  Google Scholar 

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann. Geophys. 21:1897–1910

    Article  Google Scholar 

  • Riccardi U, Hinderer J, Boy JP, Rogister Y (2009) Tilt effects on GWR superconducting gravimeters. J Geodyn 48:316–324

    Article  Google Scholar 

  • Riccardi U, Rosat S, Hinderer J (2011) Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia 48:28–39. doi:10.1088/0026-1394/48/1/003

    Article  Google Scholar 

  • Rosat S, Hinderer J (2011) Noise levels of superconducting gravimeters: updated comparison and time stability. Bull Seism Soc Am 101(3):1233–1241

    Google Scholar 

  • Rosat S, Hinderer J, Crossley D, Boy JP (2004) Performance of superconducting gravimeters from long-period seismology to tides. J Geodyn 38(3–5):461–476

    Google Scholar 

  • Rosat S, Boy J-P, Ferhat G, Hinderer J, Amalvict M, Gegout P, Luck B (2009) Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: New results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48:360–365

    Article  Google Scholar 

  • Rosat S, Calvo M, Hinderer J, Riccardi U, Arnoso J, Zürn W (2014) A comparison of the performances of gravimeters and seismometer at the gravimetric observatory of Strasbourg. Metrologia 39:495–501

    Google Scholar 

  • Tamura Y (1987) A harmonic development of the tide-generating potential. Bull d’Inf Marées Terr 99:6813–6855

    Google Scholar 

  • Tamura Y, Sato T, Ooe M, Ishiguro M (1991) A procedure for tidal analysis with a Bayesian information criterion. Geophys J Int 04:507–516

    Google Scholar 

  • Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640

    Article  Google Scholar 

  • Venedikov AP, Arnoso J, Vieira R (2003) VAV: a program for tidal data processing. Comput Geosci 29:487–502

    Article  Google Scholar 

  • Vieira R, Camacho AG, Toro C, Montesinos FG (1992) A calibration gravimetric line between Madrid and Valle de los Caídos stations Comp. Rend J.L.G. Conseil Eur 73:18–25

    Google Scholar 

  • Wang R (1997) Tidal response of the solid Earth. In: Helmut W, Zürn W, Wenzel H-G (eds) Tidal Phenomena, Lecture Notes in Earth Sciences. Springer, Berlin, pp 27–57

  • Wenzel HG (1996) The nanogal software: earth tide data processing package ETERNA 3.30. Bull Inf Marées Terr 124:9425–9439

    Google Scholar 

  • Wenzel HG (1997) Analysis of Earth tide observations, Lecture Notes in Earth Sciences, 66, Wilhelm, H., Zürn W, Wenzel H-G (eds) Springer, New York, pp. 59–75.

Download references

Acknowledgments

This research was partially funded by projects CGL2011-25494 of Spanish Ministry of Economy and Competitiveness and GR35/10-A of University Complutense of Madrid-BSCH. The authors are grateful to all colleagues of the gravimetric observatories at J9-Strasbourg (France) and Yebes-IGN (Spain) for their assistance during the period of observations. We thank to G. Papp and one anonymous reviewer for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arnoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnoso, J., Riccardi, U., Hinderer, J. et al. Analysis of co-located measurements made with a LaCoste&Romberg Graviton-EG gravimeter and two superconducting gravimeters at Strasbourg (France) and Yebes (Spain). Acta Geod Geophys 49, 147–160 (2014). https://doi.org/10.1007/s40328-014-0043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-014-0043-y

Keywords

Navigation