Skip to main content
Log in

Comparison of the performances of different spring and superconducting gravimeters and STS-2 seismometer at the Gravimetric Observatory of Strasbourg, France

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Since 1973, the Gravimetric Observatory of Strasbourg (France) is located in an old fort named J9 and has been the place for various gravity experiments. We present a comparison of the noise levels of various instruments that are or were continuously recording at J9, including the LaCoste&Romberg Earth-Tide Meter ET-5 (1973–1985), the GWR Superconducting Gravimeter TT-T005 (1987–1996), the Superconducting Gravimeter C026 (since 1996), the STS-2 seismometer (since 2010) and the LaCoste&Romberg ET-11 (continuously since October 2010). Besides these instruments, the J9 Observatory has hosted temporary gravity experiments with the Micro-g LaCoste Inc. gPhone-054 (May–December 2008 and May–September 2009) and the Micro-g LaCoste Inc. Graviton-EG1194 (June–October 2011). We include also in the comparison the absolute gravimeter Micro-g FG5 #206 which is regularly performing absolute gravity measurements at J9 since 1997 and a spring gravimeter Scintrex CG5 which recorded at J9 between March 2009 and February 2010. We present the performances of these various instruments in terms of noise levels using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The different responses to atmospheric pressure changes of all the instruments are also investigated. A final part is devoted to the instrumental self-noise of the SG C026, STS-2 and L&R ET-11 using the three channel correlation analysis method applied to 1-Hz data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abours S. 1977. Exploitation des enregistrements de marée gravimétrique à Strasbourg-Aout 1973-Février 1977. Diplôme d’Ingénieur Géophysicien. University of Strasbourg, France (in French).

    Google Scholar 

  • Abours S. and Lecolazet R., 1977. New results about the dynamical effects of the liquid outer core as observed at Strasbourg. In: Bonatz M. and Melchior P. (Eds), Proceedings of the 8th International Symposium on Earth Tides: Bonn, 19-24 September 1977. Institute of Theoretical Geodesy, University of Bonn, Bonn, Germany, 689–697.

    Google Scholar 

  • Amalvict M., Hinderer J, Boy J.-P. and Gegout P., 2001. A 3 year comparison between a superconducting gravimeter (GWRC026) and an absolute gravimeter (FG5#206) in Strasbourg (France). J. Geod. Soc. Japan, 47, 334–340.

    Google Scholar 

  • Arnoso J., Vieira R., Velez E.J., Van Ruymbeke M. and Venedikov A.P., 2001. Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote, Spain). J. Geod. Soc. Japan, 47, 70–75.

    Google Scholar 

  • Arnoso J., Riccardi U., Hinderer J., Cordoba B. and Montesinos F.G., 2014. Analysis of co-located measurements made with a LaCoste & Romberg Graviton-EG gravimeter and two superconducting gravimeters at Strasbourg (France) and Yebes (Spain). Acta Geod. Geophys., 49, 147–160, DOI: 10.1007/s40328-014-0043-y.

    Article  Google Scholar 

  • Banka D., 1997. Noise Levels of Superconducting Gravimeters at Seismic Frequencies. Ph.D. Thesis, University of Clausthal, Clausthal, Germany.

    Google Scholar 

  • Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.

    Article  Google Scholar 

  • Calvo M., Rosat S., Hinderer J., Legros H., Boy J.-P. and Riccardi U., 2014. Study of the time stability of tides using a long term (1973–2011) gravity record at Strasbourg, France. In: Rizos C. and Willis P. (Eds), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, 139. Springer-Verlag, Berlin, Germany, 377–381.

    Google Scholar 

  • Crossley D., Jensen O. and Hinderer J., 1995. Effective barometric admittance and gravity residuals. Phys. Earth Planet Inter., 90, 221–241.

    Article  Google Scholar 

  • Crossley D., Hinderer J., Casula G., Francis O., Hsu H.T., Imanishi Y., Jentzsch G., Kääriäinen J., Merriam J., Meurers B., Neumeyer J., Richter B., Shibuya K., Sato T. and Van Dam T., 1999. Network of superconducting gravimeters benefits a number of disciplines. EOS Trans. AGU, 80(11), 121/125–126.

    Article  Google Scholar 

  • Crossley D., Hinderer J. and Amalvict M., 2001. A spectral comparison of absolute and superconducting gravimeter data. J. Geod. Soc. Japan, 47, 373–379.

    Google Scholar 

  • Crossley D., Hinderer J. and Riccardi U., 2013. The measurement of surface gravity. Rep. Prog. Phys., 76, 046101.

    Article  Google Scholar 

  • Ekström G., 2001. Time domain analysis of the earth’s background seismic radiation. J. Geophys. Res., 106, 26483–26494.

    Article  Google Scholar 

  • Freybourger M., Hinderer J. and Trampert J., 1997. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in subseismic frequency bands. Phys. Earth Planet. Inter., 101, 203–217.

    Article  Google Scholar 

  • Gostoli J., 1970. Etude et construction d’un dispositif d’asservissement pour un gravimètre LaCoste- Romberg. Enregistrement numérique de la marée gravimétrique. Thèse de Dr. Ing., University of Strasbourg, Strasbourg, France (in French).

    Google Scholar 

  • Helffrich G.R., Wookey J.M. and Bastow I.D., 2013. The Seismic Analysis Code: A Primer and User’s Guide. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Hinderer J., Amalvict M., Crossley D., Leveque J.-J., Rivera L. and Luck B., 2002. Tides, earthquakes and ground noise as seen by the absolute gravimeter FG5 and its superspring; comparison with a superconducting gravimeter and a broadband seismometer. Metrologia, 39, 495–501.

    Article  Google Scholar 

  • Hinderer J., Hector B., Boy J.-P., Riccardi U., Rosat S., Calvo M. and Littel F, 2014. A search for atmospheric effects on gravity at different time and space scales. J. Geodyn., 80, 50–57, DOI: 10.1016/j.jog.2014.02.001.

    Article  Google Scholar 

  • Imanishi Y., 2005. On the possible cause of long period instrumental noise (parasitic mode) of a superconducting gravimeter. J. Geodesy, 78, 683–690.

    Article  Google Scholar 

  • Imanishi Y., 2009. High-frequency parasitic modes of superconducting gravimeters. J. Geodesy, 83, 455–467.

    Article  Google Scholar 

  • Kurrle D. and Widmer-Schnidrig R., 2008. The horizontal hum of the Earth: A global background of spheroidal and toroidal modes. Geophys. Res. Lett., 35, DOI: 10.1029/2007GL033125.

  • LaCoste & Romberg, 2004. Instruction Manual Model G and D Meters. LaCoste & Romberg, Austin, TX, 127 pp.

    Google Scholar 

  • Merriam J., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488–500.

    Article  Google Scholar 

  • Meurers B., 2002. Aspects of gravimeter calibration by time domain comparison of gravity records. Bull. Inf. Marées Terr., 135, 10643–10650.

    Google Scholar 

  • Nawa K., Suda N., Fukao Y., Sato T., Aoyama Y. and Shibuya K., 1998. Incessant excitation of the Earth’s free oscillations. Earth Planets Space, 136, 3–8.

    Article  Google Scholar 

  • Niebauer T., 2007. Gravimetric methods- absolute gravimeter: instruments concepts and implementation. In: Herring T. (Ed.), Treatise on Geophysics, Volume 3- Geodesy. Elsevier, Amsterdam, The Netherlands, 43–64.

    Chapter  Google Scholar 

  • Nishida K., Kobayashi N. and Fukao Y., 2002. Origin of Earth’s ground noise from 2 to 20 mHz. Geophys. Res. Lett., 29, 52–1–52–4.

    Article  Google Scholar 

  • Peterson J., 1993. Observations and Modelling of Seismic Background Noise. Open-File Report 93-332. U.S. Department of Interior, Geological Survey, Albuquerque, NM.

    Google Scholar 

  • Riccardi U., Rosat S. and Hinderer J., 2011. Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia, 48, 28–39.

    Article  Google Scholar 

  • Richter B., Wenzel H.-G., Zürn W. and Klopping F., 1995. From chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth Planet. Inter., 91, 131–148.

    Article  Google Scholar 

  • Rosat S., Boy J.-P., Ferhat G., Hinderer J., Amalvict M., Gegout P. and Luck B., 2009. Analysis of a ten-year (1997–2007) record of time varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J. Geodyn., 48, 360–365.

    Article  Google Scholar 

  • Rosat S. and Hinderer J., 2011. Noise levels of superconducting gravimeters: updated comparison and time stability. Bull. Seismol. Soc. Amer., 101, 1233–1241.

    Article  Google Scholar 

  • Rosat S., Hinderer J., Crossley D. and Boy J.P., 2004. Performance of superconducting gravimeters from long-period seismology to tides. J. Geodyn., 38, 461–476.

    Article  Google Scholar 

  • Savitzky A. and Golay M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639.

    Article  Google Scholar 

  • Shapiro N.M, Campillo M., Stehly L. and Ritzwoller M.H., 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.

    Article  Google Scholar 

  • Sleeman R., van Wettum A. and Trampert J., 2006. Three-channel correlation analysis: a new technique to measure instrumental noise of digitizers and seismic sensors. Bull. Seismol. Soc. Amer., 96, 258–271.

    Article  Google Scholar 

  • Tanimoto T., 2008. Humming a different tune. Nature, 452, 539–541.

    Article  Google Scholar 

  • Van Camp M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet. Inter., 116, 81–92.

    Article  Google Scholar 

  • Van Camp M., Wenzel H.-G., Schott P., Vauterin P. and Francis O., 2000. Accurate transfer function determination for superconducting gravimeters. Geophys. Res. Lett., 27, 37–40.

    Article  Google Scholar 

  • Van Camp M., Williams S.D.P. and Francis O., 2005. Uncertainty of absolute gravity measurements. J. Geophys. Res., 110, B05406, DOI: 10.1029/2004JB003497.

    Article  Google Scholar 

  • Webb S.C., 2007. The Earth’s “hum” is driven by ocean waves over the continental shelves. Nature, 445, 754–756, DOI: 10.1038/nature05536.

    Article  Google Scholar 

  • Widmer R. and Zürn W., 1995. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett., 22, 3537–3540.

    Article  Google Scholar 

  • Widmer-Schnidrig R., 2003. What can superconducting gravimeters contribute to normal-mode seismology- Bull. Seismol. Soc. Amer., 93, 1370–1380.

    Article  Google Scholar 

  • Wielandt E. and Streckeisen G., 1982. The leaf spring seismometer: design and performance. Bull. Seismol. Soc. Amer., 72, 2349–2367.

    Google Scholar 

  • Wielandt E. and Widmer-Schnidrig R., 2002. Seismic sensing and seismic noise. In: Korn M. (Ed.), Ten Years of German Regional Seismic Network (GRSN). Report 25. Senate Commission for Geosciences. Wiley-VCH Verlag GmbH, Weinheim, Germany.

    Google Scholar 

  • Zürn W., Wenzel H.-G. and Laske G., 1991. High quality data from LaCoste-Romberg gravimeters with electrostatic feedback: A challenge for superconducting gravimeters. Bull. Inf. Marées Terr., 110, 79440–7952.

    Google Scholar 

  • Zürn W., Exss J., Steffen H., Kroner C., Jahr T. and Westerhaus M., 2007. On reduction of longperiod horizontal seismic noise using local barometric pressure. Geophys. J. Int., 171, 780–796.

    Article  Google Scholar 

  • Zürn W. and Meurers B., 2009. Clear evidence for the sign-reversal of the pressure admittance to gravity near 3mHz. J. Geodyn., 48, 371–377.

    Article  Google Scholar 

  • Zürn W. and Wielandt E., 2007. On the minimum of vertical seismic noise near 3 mHz. Geophys. J. Int., 168, 647–658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severine Rosat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosat, S., Calvo, M., Hinderer, J. et al. Comparison of the performances of different spring and superconducting gravimeters and STS-2 seismometer at the Gravimetric Observatory of Strasbourg, France. Stud Geophys Geod 59, 58–82 (2015). https://doi.org/10.1007/s11200-014-0830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0830-5

Keywords

Navigation