Skip to main content
Log in

Solutions for a nonlinear fractional Euler–Lagrange type equation

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

The aim of this paper is the study of a nonlinear fractional Euler–Lagrange type equation with a nonlocal condition by means of lower and upper solutions method. For this purpose, we begin by solving an auxiliary problem by using Laplace transform, then we convert the posed problem to an equivalent right Caputo fractional differential equation with a vanishing terminal boundary condition. After constructing the lower and upper solutions, we define a sequence of modified problems that we solve by Schauder fixed point theorem. Finally, two numerical examples are given to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, O.P.: Analytical schemes for a new class of fractional differential equations. J. Phys. A: Math. Theor. 40, 5469–5477 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrawal, O.P.: Fractional variational calculus and transversality condition. J. Phys. A Math. General 39, 10375–10384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A: Math. Theor. 41, 095201 (2008). (12pp)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Asad, J.H., Petras, I.: Fractional order two electric pendulum. Rom. Rep. Phys. 64(4), 907–914 (2012)

    Google Scholar 

  6. Blaszczyk, T.: A numerical solution of a fractional oscillator equation in a non-resisting medium with natural boundary conditions. Rom. Rep. Phys. 67(2), 350–358 (2015)

    Google Scholar 

  7. Blaszczyk, T., Ciesielski, M., Klimek, M., Leszczynski, J.: Numerical solution of fractional oscillator equation. Appl. Math. Comput. 218, 2480–2488 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cabada, A.: An overview of the lower and upper solutions method with nonlinear boundary value conditions. Boundary Value Problems 2011, 18 (2011) (Article ID 893753)

  9. De Coster, C., Habets, P.: Two-point boundary value problems: lower and upper solutions. In: Chui, C.K. (eds.) Mathematics in Science and Engineering, vol. 205, Elsevier, Amsterdam (2006)

  10. Franco, D., Nieto, Juan J., O’Regan, D.: Upper and lower solutions for first order problems with nonlinear boundary conditions. Extracta mathematicae 18, 153–160 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler functions, Related topics and applications. Springer Monographs in Mathematics, New York (2014)

  12. Guezane-Lakoud, A., Khaldi, R.: Successive approximations to solve higher order fractional differential equations. J. Nonlinear Funct. Anal. 2016, 1–9 (2016) (Article ID 29)

  13. Guezane-Lakoud, A., Khaldi, R., Torres, D.F.M.: On a fractional oscillator equation with natural boundary conditions. Progr. Fract. Differ. Appl. 3(4), 191–197 (2017)

    Article  Google Scholar 

  14. Jiang, D., Yang, Y., Chu, J., O’Regan, D.: The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order. Nonlinear Anal. Theory Methods Appl. 67, 2815–2828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khaldi, R., Guezane-Lakoud, A.: Upper and lower solutions method for higher order boundary value problems. Progr. Fract. Differ. Appl. 3(1), 53–57 (2017)

    Article  MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier Science, Amsterdam (2006)

  17. Podlubny, I.: Fractional Differential Equation. Academic Press, Sain Diego (1999)

    MATH  Google Scholar 

  18. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach. Yverdon, Switzerland (1993)

Download references

Acknowledgements

The authors thank the anonymous referee for his valuable comments and suggestions that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guezane-Lakoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezane-Lakoud, A., Khaldi, R. Solutions for a nonlinear fractional Euler–Lagrange type equation. SeMA 76, 195–202 (2019). https://doi.org/10.1007/s40324-018-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-018-0170-4

Keywords

Mathematical Subject classification

Navigation