Skip to main content
Log in

Convergence rates for nonequilibrium Langevin dynamics

  • Published:
Annales mathématiques du Québec Aims and scope Submit manuscript

Abstract

We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding respectively to frictions going to zero or infinity) are carefully investigated. In particular, the maximal magnitude of admissible perturbations are quantified as a function of the friction. Numerical results based on a Galerkin discretization of the generator of the dynamics confirm the theoretical lower bounds on the spectral gap.

Résumé

Nous considérons la convergence exponentielle vers l’état stationnaire pour des dynamiques de Langevin hors d’équilibre, par une approche perturbative reposant sur des techniques d’hypocoercivité initialement développées pour des dynamiques d’équilibre. Les limites hamiltoniennes et suramorties (qui correspondent respectivement au cas des frictions tendant vers zéro ou l’infini) sont étudiées précisément. En particulier, nous quantifions la magnitude maximale des perturbations admissibles en fonction de la friction. Des simulations numériques utilisant une discrétisation de Galerkin du générateur de la dynamique confirment les bornes inférieures que nous obtenons théoriquement pour le trou spectral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Although sharper results may be obtained with Young inequalities, the final scaling of admissible values of \(\tau \) in terms of \(\xi \) is unaffected.

References

  1. Achleitner, F., Arnold, A., Stürzer, D.: Large-time behavior in non-symmetric Fokker–Planck equations. Riv. Math. Univ. Parma 6(1), 1–68 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Baudoin, F.: Bakry–Emery meet Villani. arXiv:1308.4938 (2013) (preprint)

  3. Baudoin, F.: Wasserstein contraction properties for hypoelliptic diffusions. arXiv:1602.04177 (2016) (preprint)

  4. Bolley, F., Gentil, I.: Phi-entropy inequalities for diffusion semigroups. J. Math. Pures Appl. 93, 449–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouin, E., Hoffmann, F., Mouhot, C.: Exponential decay to equilibrium for a fibre lay-down process on a moing conveyor belt. arXiv:1605.04121 (2016) (preprint)

  6. Chatelin, F.: Spectral approximation of linear operators, volume 65 of Classics in Applied Mathematics. SIAM (2011)

  7. Dolbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. eXpress 2013(2), 165–175 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Math. Acad. Sci. Paris 347(9–10), 511–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. AMS 367(6), 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eberle, A., Guillin, A., Zimmer, R.: Couplings and quantitative contraction rates for langevin dynamics. arXiv:1703.01617 (2017) (preprint)

  11. Eckmann, J.-P., Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235, 233–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, volume 42 of Springer Series in Computational Mathematics. Springer, Berlin (2012)

    Book  Google Scholar 

  13. Hairer, M., Pavliotis, G.: From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131, 175–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 151–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iacobucci, A.: PhD thesis. Université Paris Dauphine (2017)

  16. Kozlov, S.M.: Effective diffusion for the Fokker–Planck equation. Math. Notes 45(5–6), 360368 (1989)

    MathSciNet  Google Scholar 

  17. Latorre, J.C., Pavliotis, G.A., Kramer, P.R.: Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150(4), 776–803 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leimkuhler, B., Matthews, C.: Molecular Dynamics With Deterministic and Stochastic Numerical Methods, volume 39 of Interdisciplinary Applied Mathematics. Springer, Cham (2015)

    MATH  Google Scholar 

  19. Leimkuhler, B., Matthews, Ch., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  21. Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olla, S., Letizia, V.: Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics. Ann. Probab. (2017) (to appear)

  24. Redon, S., Stoltz, G., Trstanova, Z.: Error analysis of modified Langevin dynamics. J. Stat. Phys. 164(4), 735–771 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rey-Bellet, L.: Ergodic properties of markov processes. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems II, volume 1881 of Lecture Notes in Mathematics, pp. 1–39. Springer, Berlin (2006)

    Google Scholar 

  26. Risken, H.: The Fokker–Planck Equation. Methods of Solution and Applications, volume 18 of Springer Series in Synergetics, 2nd edn. Springer, Berlin (1989)

    MATH  Google Scholar 

  27. Rodenhausen, H.: Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Stat. Phys. 55(5–6), 1065–1088 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roussel, J., Stoltz, G.: Spectral methods for langevin dynamics and associated error estimates. arXiv:1702.04718 (2017) (preprint)

  29. Talay, D.: Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process Relat. Fields 8, 163–198 (2002)

    MATH  Google Scholar 

  30. Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202(950) (2009)

Download references

Acknowledgements

We thank Anton Arnold for interesting discussions. The work of G.S. is supported by the Agence Nationale de la Recherche, under Grant ANR-14-CE23-0012 (COSMOS) and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement number 614492. The work of S.O. is supported by the Agence Nationale de la Recherche, under Grant ANR-15-CE40-0020-01 (LSD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Stoltz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobucci, A., Olla, S. & Stoltz, G. Convergence rates for nonequilibrium Langevin dynamics. Ann. Math. Québec 43, 73–98 (2019). https://doi.org/10.1007/s40316-017-0091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40316-017-0091-0

Keywords

Mathematics Subject Classification

Navigation