Skip to main content
Log in

The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A class of Langevin stochastic differential equations is shown to converge in the small-mass limit under very weak assumptions on the coefficients defining the equation. The convergence result is applied to three physically realizable examples where the coefficients defining the Langevin equation for these examples grow unboundedly either at a boundary, such as a wall, and/or at the point at infinity. This unboundedness violates the assumptions of previous limit theorems in the literature. The main result of this paper proves convergence for such examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derjaguin, B.: Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR 14, 633–662 (1941)

    Google Scholar 

  2. Freidlin, M.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117, 617–634 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Freidlin, M., Hu, W.: Smoluchowski–Kramers approximation in the case of variable friction. J. Math. Sci. 179, 184–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freidlin, M., Hu, W., Wentzell, A.: Small mass asymptotic for the motion with vanishing friction. Stoch. Process. Appl. 123, 45–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, 3rd edn. Springer, Heidelberg (2012). 1979. doi:10.1007/978-3-642-25847-3. Translated from the Russian original by Joseph Szücs

  6. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall Inc., Englewood Cliffs (1965)

    MATH  Google Scholar 

  7. Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski–Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2015). doi:10.1007/s00220-014-2233-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  9. Khasminskii, R.: Stochastic stability of differential equations. In: Milstein, G.N., Nevelson, M.B. (eds.) Stochastic Modelling and Applied Probability, vol. 66, 2nd edn. Springer, Heidelberg (2012). doi:10.1007/978-3-642-23280-0

    Google Scholar 

  10. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys. Lett. 54, 28–34 (2001)

  12. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993). doi:10.2307/1427522

    Article  MathSciNet  MATH  Google Scholar 

  13. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  14. Ortega, J.M.: Matrix Theory. The University Series in Mathematics. Plenum Press, New York (1987). A second course

    Google Scholar 

  15. Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum Systems. II. Lecture Notes in Mathematics, vol. 1881, pp. 1–39. Springer, Berlin (2006)

  16. Sancho, J.M., Miguel, M.S., Dürr, D.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291–305 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Smoluchowski, M.: Drei vortrage über diffusion brownsche bewegung and koagulation von kolloidteilchen. Phys. Z. 17, 557–585 (1916)

    ADS  Google Scholar 

  18. Verwey, E.J.W., Overbeek, J.T.G., Overbeek, J.T.G.: Theory of the stability of lyophobic colloids. Courier Corp. (1999)

  19. Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010)

  20. Volpe, G., Petrov, D.: Torque detection using brownian fluctuations. Phys. Rev. Lett. 97(21), 210603 (2006)

  21. Weinan, E., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Phys. Chem. 61, 391–420 (2010)

Download references

Acknowledgments

DH and SH would like to acknowledge support from Drake University and Iowa State University. GV was partially funded by a Marie Curie Career Integration Grant (PCIG11GA-2012-321726) and a Distinguished Young Scientist award of the Turkish Academy of Sciences (TÜBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Hottovy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, D.P., Hottovy, S. & Volpe, G. The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction. J Stat Phys 163, 659–673 (2016). https://doi.org/10.1007/s10955-016-1498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1498-8

Keywords

Navigation