Skip to main content
Log in

Evolution of Smooth Shapes and Integrable Systems

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We consider a homotopic evolution in the space of smooth shapes starting from the unit circle. Based on the Löwner–Kufarev equation, we give a Hamiltonian formulation of this evolution and provide conservation laws. The symmetries of the evolution are given by the Virasoro algebra. The ‘positive’ Virasoro generators span the holomorphic part of the complexified vector bundle over the space of conformal embeddings of the unit disk into the complex plane and smooth on the boundary. In the covariant formulation, they are conserved along the Hamiltonian flow. The ‘negative’ Virasoro generators can be recovered by an iterative method making use of the canonical Poisson structure. We study an embedding of the Löwner–Kufarev trajectories into the Segal–Wilson Grassmannian, construct the \(\tau \)-function, and the Baker–Akhiezer function which are related to a class of solutions to the KP hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airault, H., Malliavin, P.: Unitarizing probability measures for representations of Virasoro algebra. J. Math. Pures Appl. 80(6), 627–667 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Airault, H., Neretin, Yu.: On the action of Virasoro algebra on the space of univalent functions. Bull. Sci. Math. 132(1), 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aleksandrov, I.A., Popov, V.I.: Optimal controls and univalent functions. Ann. Univ. Mariae Curie-Sklodowska. Sect. A 22–24(1968/70), 13–20 (1972)

    MathSciNet  Google Scholar 

  4. Arnold, V.I.: Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin (1992)

    Google Scholar 

  5. Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003)

  6. Bauer, M., Bernard, D.: Conformal field theories of stochastic Loewner evolutions. Commun. Math. Phys. 239(3), 493–521 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berkson, E., Porta, H.: Semigroups of holomorphic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl. 940–955 (1916)

  9. Boggess, A.: CR Manifolds and the Tangential Cauchy–Riemann Complex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1991)

    MATH  Google Scholar 

  10. Bott, R.: On the characteristic classes of groups of diffeomorphisms. Enseign. Math. (2) 23, 209–220 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation I: the unit disc. Journal für die reine und angewandte Mathematik (to appear). arXiv:0807.1594

  12. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154(1–2), 137–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conlon, L.: Differentiable Manifolds, 2nd edn. Springer-Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  14. Date, E., Kashiwara, M., Miwa, T.: Vertex operators and functions: transformation groups for soliton equations II. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 387–392 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation Groups for Soliton Equations. Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981). World Sci Publishing, Singapore (1983)

    MATH  Google Scholar 

  16. Dickey, L.A.: Soliton equations and Hamiltonian systems. In: Advanced Series in Mathematical Physics, 2nd edn. vol. 26. World Scientific Publishing Co. Inc., River Edge, NJ (2003)

  17. Douglas, R.G.: Banach algebra techniques in operator theory. 2nd edn. Graduate Texts in Mathematics, vol. 179. Springer-Verlag, New York, p. 194 (1998)

  18. Faddeev, L.D.: Discretized Virasoro Algebra. Contemp. Math., 391, Amer. Math. Soc., Providence, RI, pp. 59–67 (2005)

  19. Friedrich, R.: The Global Geometry of Stochastic Loewner Evolutions. Probabilistic Approach to Geometry. Adv. Stud. Pure Math., vol. 57, pp. 79–117. Math. Soc. Japan, Tokyo (2010)

  20. Friedrich, R., Werner, W.: Conformal restriction, highest-weight representations and SLE. Commun. Math. Phys. 243(1), 105–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gel’fand, I.M., Fuchs, D.B.: Cohomology of the Lie algebra of vector fields on the circle. Funct. Anal. Appl. 2(4), 342–343 (1968)

    Article  Google Scholar 

  22. Gervais, J.-L.: Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets. Phys. Lett. B 160(4–5), 277–278 (1985)

    Article  MathSciNet  Google Scholar 

  23. Goodman, G.S.: Univalent functions and optimal control. Ph.D. Thesis, Stanford University (1968)

  24. Goryainov, V.V.: Fractional iterates of functions that are analytic in the unit disk with given fixed points. Mat. Sb. 182(9), 1281–1299 (1991); Engl. Transl. in Math. USSR-Sb. 74(1), 29–46 (1993)

  25. Gustafsson, B., Vasil’ev, A.: Conformal and potential analysis in Hele-Shaw cells. In: Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2006)

  26. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth. Math. USSR Izv., 2, 1271–1311 (1968). Izv. Akad. Nauk USSR Ser. Mat. 32, 1923–1967 (1968)

  27. Kirillov, A.A.: Geometric approach to discrete series of unirreps for vir. J. Math. Pures Appl. 77, 735–746 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirillov, A.A., Yuriev, D.V.: Representations of the Virasoro algebra by the orbit method. J. Geom. Phys. 5(3), 351–363 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krichever, I.M.: On the rational solutions of the Zaharov–Shabat equations and completely integrable systems of N particles on the line. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 84, 117–130 (1979)

    MathSciNet  MATH  Google Scholar 

  30. Kufarev, P.P.: On one-parameter families of analytic functions. Rec. Math. [Mat. Sbornik] N.S. 13(55), 87–118 (1943)

    MathSciNet  Google Scholar 

  31. Lempert, L.: The Virasoro group as a complex manifold. Math. Res. Lett. 2, 479–495 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  33. Markina, I., Prokhorov, D., Vasil’ev, A.: Sub-Riemannian geometry of the coefficients of univalent functions. J. Funct. Anal. 245(2), 475–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Markina, I., Vasil’ev, A.: Virasoro algebra and dynamics in the space of univalent functions. Contemp. Math. 525, 85–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matveev, V.B.: Some comments on the rational solutions of the Zakharov–Schabat equations. Lett. Math. Phys. 3(6), 503–512 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: DeWitt, B., Stora, R. (eds.) Relativité, Groupes et Topologie II, pp. 1007–1057. North-Holland, Amsterdam (1984)

  37. Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: Integrable structure of interface dynamics. Phys. Rev. Lett. 84(22), 5106–5109 (2000)

    Article  Google Scholar 

  38. Moody, R.V.: A new class of Lie algebras. J. Algebra 10, 211–230 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mumford, D.: Pattern theory: the mathematics of perception. Proc. ICM 1, 401–422 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Muñoz Porras, J., Pablos Romo, F.: Generalized reciprocity laws. Trans. Am. Math. Soc. 360(7), 3473–3492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pommerenke, Ch.: Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MathSciNet  MATH  Google Scholar 

  42. Pommerenke, Ch.: Univalent Functions, with a Chapter on Quadratic Differentials by G. Jensen. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  43. Prokhorov, D.V.: Value sets for systems of functionals in the classes of univalent functions. Math. Sb. 181(12), 1659–1677 (1990)

    MATH  Google Scholar 

  44. Prokhorov, D., Vasil’ev, A.: Univalent functions and integrable systems. Commun. Math. Phys. 262(2), 393–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pressley, A., Segal, G.: Loop Groups, p. 318. Oxford University Press, New York, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press (1986)

  46. Raboin, P.: Le problème du \(\bar{\partial }\) sur en espace de Hilbert. Bull. Soc. Math. Fr. 107, 225–240 (1979)

    MathSciNet  MATH  Google Scholar 

  47. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edn, p. 400. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1980)

  48. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. In: Fujita, H., Lax, P.D., Strang, G. (eds.) Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982). North-Holland Mathematics Studies, vol. 81, pp. 259–271. North-Holland, Amsterdam (1983)

  49. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES 61, 5 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schaeffer, A.C., Spencer, D.C.: Coefficient Regions for Schlicht Functions (With a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad). American Mathematical Society Colloquium Publications, vol. 35. American Mathematical Society, New York (1950)

  51. Takhtajan, L.A., Teo, L.-P.: Weil–Petersson geometry on the universal Teichmuller space. Memb. Am. Math. Soc. 183(861), 119 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Wilson, G.: Bispectral commutative ordinary differential operators. J. Reine Angew. Math. 442, 177–204 (1993)

    MathSciNet  MATH  Google Scholar 

  53. Wilson, G.: Collision of Calogero–Moser particles and an adelic Grassmanian (with an appendix by I. G. Macdonald). Invent. Math. 133, 1–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Witten, E.: Quantum field theory, Grassmannians, and algebraic curves. Commun. Math. Phys. 113(4), 529–600 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support of NILS mobility project and Professor Fernando Pérez-González (Universidad de La Laguna, España), the University of Chicago and Professor Paul Wiegmann for support and helpful discussions. The authors acknowledge also helpful discussions with Professor Roland Friedrich during his visit to the University of Bergen and valuable remarks made by an anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vasil’ev.

Additional information

Communicated by Filippo Bracci.

The authors have been supported by the grants of the Norwegian Research Council #239033/F20, #213440/BG; and EU FP7 IRSES program STREVCOMS, Grant No. PIRSES-GA-2013-612669. This work was supported by the Erwin Schrödinger Institute in Vienna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markina, I., Vasil’ev, A. Evolution of Smooth Shapes and Integrable Systems. Comput. Methods Funct. Theory 16, 203–229 (2016). https://doi.org/10.1007/s40315-015-0133-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-015-0133-z

Keywords

Mathematics Subject Classification

Navigation