Skip to main content
Log in

Normal Families: a Geometric Perspective

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In this largely expository paper we present an alternative to the common practice of discussing normal families of analytic maps in terms of the Euclidean metric and equicontinuity. Indeed, in most cases the hyperbolic metric and the Schwarz–Pick Lemma are available, and then equicontinuity is redundant and is replaced by a much stronger Lipschitz condition that is expressed in terms of conformally invariant metrics. Here, we discuss normal families in terms of (not necessarily analytic) maps that satisfy types of uniform Lipschitz conditions with respect to various conformal metrics, especially the hyperbolic and spherical metrics. A number of classical results for normal families of analytic maps extend to these broader classes of (not necessarily analytic) functions that satisfy types of uniform Lipschitz conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Conformal Invariants. Topics in Geometric Function Theory. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  2. Ahlfors, L.V.: Complex Analysis, 3rd edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  3. Arzelà, C.: Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. 5(5), 55–74 (1895)

    Google Scholar 

  4. Arzelà, C.: Note on series of analytic functions. Ann. Math. (2) 5, 51–63 (1904)

    Google Scholar 

  5. Ascoli, G.: Le curve limiti di una varietá data di curve, Atti della R. Accad. dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat. XVIII, 521–586 (1883)

    Google Scholar 

  6. W. Bergweiler, Rescaling principles in function theory. In: Lakshmi, K.S., Parvatham, R., Srivastava, H.M. (eds.) Proceedings of the International Conference on Analysis and its Applications (Chennai, 2000). Allied Publ., New Delhi, pp. 11–29 (2001)

  7. Carathéodory, C., Landau, E.: Beiträge zur Konvergenz von Funktionenfolgen, Sitz. Ber. Königl. Pruess. Akad. Wiss., Phys.-math. Kl 26, 587–613 (1911)

  8. Carathéodory, C.: Stetige Konvergenz und normale Familien von Funktionen. Math. Ann. 101, 515–533 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carathéodory, C.: Theory of Functions of a Complex Variable, vol. II. Chelsea Pub. Co., Vermont (1960)

    Google Scholar 

  10. Chuang, C.T.: Normal Families of Meromorphic Functions. World Scientific Press, Singapore (1993)

    Book  MATH  Google Scholar 

  11. Conway, J.B.: Functions of One Complex Variable, 2nd edn. Springer, Berlin (1978)

    Book  Google Scholar 

  12. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, London (1960)

    MATH  Google Scholar 

  13. Dineen, S.: The Schwarz Lemma. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  14. Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables, vol. 1. Wadsworth & Brooks/Cole (1990)

  15. Hayman, W.K.: Meromorphic Functions. Oxford University Press, Oxford (1964)

    MATH  Google Scholar 

  16. Jentzsch, R.: Untersuchungen zur Theorie der Folgen analytischen Funktionen. Acta Math. 41, 219–251 (1918)

    Google Scholar 

  17. Kelley, J.L.: General Topology. Van Nostrand (1955)

  18. Lindelöf, E.: Démonstration nouvelle d’un théorème fondamental sur les suites de fonctions monoogénes. Bull. Math. Soc. Fr. 41, 171–178 (1913)

    MATH  Google Scholar 

  19. Lorentzen, L.: General convergence in quasi-normal families. Proc. Edinb. Math. Soc. 46, 169–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marty, F.: Recherches sur la répartition des valeurs d’une fonction méromorphe. Ann. Fac. Sci. Toulouse (3) 23, 183–261 (1931)

    Google Scholar 

  21. Miniowitz, R.: Normal families of quasimeromorphic functions. Proc. Am. Math. Soc. 84, 35–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montel, P.: Sur les suites infinies de fonctions. Ann. Ecole Norm. Sup. (3) 24, 233–334 (1907)

    Google Scholar 

  23. Montel, P.: Sur les families de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine. Ann. Ecole Norm. Sup. (3) 29, 487–535 (1912)

    MathSciNet  MATH  Google Scholar 

  24. Montel, P.: Sur les familles quasi-normales de fonctions holomorphes. Mem. Acad. R. Belgique 6, 1–41 (1922)

    Google Scholar 

  25. Montel, P.: Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, 1927, 2nd edn. Chelsea, New York (1974)

  26. Osgood, W.F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals. Ann. Math. (2) III, 25–34 (1901)

  27. Ostrowski, A.: Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes. Math. Zeit. 24, 215–258 (1926)

    Article  MathSciNet  Google Scholar 

  28. Porter, M.B.: On functions defined by an infinite series of analytic functions of a complex variable. Ann. Math. (2) 6, 45–48 (1904)

    Google Scholar 

  29. Porter, M.B.: Concerning series of analytic functions. Ann. Math. (2) 6, 190–192 (1905)

    Article  MATH  Google Scholar 

  30. Remmert, R.: Theory of complex functions (trans. by R. B. Burckel), Graduate Texts in Mathematics, vol. 122. Springer, New York (1990)

  31. Remmert, R.: Classical topics in complex function theory (trans. by L. Kay), Graduate Texts in Mathematics, vol. 172. Springer, New York (1998)

  32. Royden, H.L.: A criterion for the normality of a family of meromorphic functions. Ann. Acad. Sci. Fenn. A.I. 10, 499–500 (1985)

    Google Scholar 

  33. Royden, H.L.: Real Analysis. MacMillan, New York (1963)

    MATH  Google Scholar 

  34. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  35. Schiff, J.L.: Normal Families. Universitext. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  36. Stieltjes, T.-J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse VIII, 1–122 (1894)

    Google Scholar 

  37. Takatsuka, P.: Normal families of holomorphic functions on infinite dimensional spaces. Portugaliae Math. 63, 351–362 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Vitali, G.: Sopra le serie di funzioni analitiche. Rend. Ist. Lombardo (2) VI, 772–774 (1903)

  39. Vitali, G.: Sopra le serie di funzioni analitiche. Ann. Mat. Pura Appl. (3) 10, 65–82 (1904)

    Google Scholar 

  40. Zalcman, L.: A heuristic principle in complex function theory. Am. Math. Mon. 82, 813–818 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zalcman, L.: Normal families: new perspectives. Bull. Am. Math. Soc. 35, 215–230 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the African Institute for Mathematical Sciences (AIMS) for its hospitality during the period when this work was started. In addition, the second author is thankful for support through an AIMS Research Fellowship for Visiting Researchers that enabled him to visit AIMS during the period January 1–March 31, 2013. A Taft Faculty Release Fellowship awarded by the Taft Research Center of the University of Cincinnati provided the second author with leave January–May, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Minda.

Additional information

Communicated by Matti Vuorinen.

To the memory of our friend, Fred W. Gehring, for his many important contributions to mathematics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beardon, A.F., Minda, D. Normal Families: a Geometric Perspective. Comput. Methods Funct. Theory 14, 331–355 (2014). https://doi.org/10.1007/s40315-014-0054-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0054-2

Keywords

Mathematics Subject Classification (2000)

Navigation