Skip to main content
Log in

An improved three-term derivative-free method for solving nonlinear equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, we proposed an improved three-term derivative-free method for solving system of nonlinear equations, which combines the ideas in Yan et al. (J Comput Appl Math 234:649–657, 2010) and Yuan and Zhang (J Comput Appl Math 286:186–195, 2015) with the projection method. The global convergence of the proposed method was established under some conditions. Numerical experiment shows that the method is efficient and promising compared to some existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abubakar AB, Kumam P (2018) A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer Algorithms. https://doi.org/10.1007/s11075-018-0541-z

  • Abubakar AB, Waziri MY (2016) A matrix-free approach for solving systems of nonlinear equations. J Modern Methods Numer Math 7(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Baali M, Spedicato E, Maggioni F (2014) Broyden’s quasi-Newton methods for a nonlinear system of equations and unconstrained optimization: a review and open problems. Optim Methods Softw 29(5):937–954

    Article  MathSciNet  MATH  Google Scholar 

  • Andrei N (2008) Another hybrid conjugate gradient algorithm for unconstrained optomization. Numer Algorithms 47:143–156

    Article  MathSciNet  MATH  Google Scholar 

  • Bing Y, Lin G (1991) An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J Optim 1(2):206–221

    Article  MathSciNet  MATH  Google Scholar 

  • Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  MathSciNet  MATH  Google Scholar 

  • Chen WJ, Li XW (2001) Equivalence between iterative method and nonlinear complementarity method for two dimensional contact problem with friction. Eng Mech 18(6):33–38

    Google Scholar 

  • Chen X, Qi L, Sun D (1998) Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math Comput Am Math Soc 67(222):519–540

    Article  MathSciNet  MATH  Google Scholar 

  • Chen HB, Wang YJ, Zhao HG (2012) Finite convergence of a projected proximal point algorithm for the generalized variational inequalities. Oper Res Lett 44:303–305

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng W (2009) A PRP type method for systems of monotone equations. Math Comput Model 50:15–20

    Article  MathSciNet  MATH  Google Scholar 

  • Chuanwei W, Yiju W (2009) A superlinearly convergent projection method for constrained systems of nonlinear equations. J Glob Optim 44(2):283–296

    Article  MathSciNet  MATH  Google Scholar 

  • Dembo RS, Eisenstat SC, Steihaug T (1982) Inexact Newton methods. SIAM J Numer Anal 19(2):400–408

    Article  MathSciNet  MATH  Google Scholar 

  • Dirkse SP, Ferris MJ (1995) A collection of nonlinear mixed complementarity problems. Optim Methods Softw 5:319–345

    Article  Google Scholar 

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program Ser 91:201–213

    Article  MathSciNet  MATH  Google Scholar 

  • Facchinei F, Pang J-S (2007) Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Feng D, Sun M, Wang X (2017) A family of conjugate gradient methods for large-scale nonlinear equations. J Inequal Appl 2017(1):236

    Article  MathSciNet  MATH  Google Scholar 

  • Haibin C, Yiju W, Gang W (2014) Strong convergence of extragradient method for generalized variational inequalities in Hilbert space. J Inequal Appl 2014(1):223

    Article  MathSciNet  MATH  Google Scholar 

  • Haitao C, Yiju W, Meixia L (2012) A smoothing inexact newton method for p0 nonlinear complementarity problem. Front Math China 7(6):1043–1058

    Article  MathSciNet  MATH  Google Scholar 

  • Han JY, Xiu NH, Qi HD (2006) Nonlinear complementarity theory and algorithm. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  • Hassan M, Abubakar AB (2017) A positive spectral gradient-like method for large-scale nonlinear monotone equations. Bull Comput Appl Math 5(1):99–115

    MathSciNet  MATH  Google Scholar 

  • Krejić N, Lužanin Z (2002) Newton-like method with modification of the right-hand-side vector. Math Comput 71(237):237–250

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Li D-H (2011) A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J Numer Anal 31(4):1625–1635

    Article  MathSciNet  MATH  Google Scholar 

  • Li D-H, Wang X-L (2011) A modified Fletcher-Reeves-type derivative-free methods for symmetric nonlinear equations. Numer Algebra Control Optim 1(1):71–82

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Zhou W (2006) Spectral gradient projection method for solving nonlinear monotone equations. J Comput Appl Math 196(2):478–484

    Article  MathSciNet  MATH  Google Scholar 

  • Martınez JM (2000) Practical quasi-Newton methods for solving nonlinear systems. J Comput Appl Math 124(1–2):97–121

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammad H, Waziri MY (2015) On Broyden-like update via some quadratures for solving nonlinear systems of equations. Turk J Math 39(3):335–345

    Article  MathSciNet  MATH  Google Scholar 

  • Solodov MV, Svaiter BF (1998) A globally convergent inexact Newton method for systems of monotone equations. In: Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods. Springer, pp 355–369

  • Wang YJ, Qi LQ, Luo SL, Xu Y (2014) An alternative steepest direction method for the optimization in evaluating geometric discord. Pac J Optim 10(1):137–149

    MathSciNet  MATH  Google Scholar 

  • Wang Y, Caccetta L, Zhou G (2015) Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer Linear Algebra Appl 22(6):1059–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Waziri MY, Leong WJ, Hassan MA, Monsi M (2010) A new Newton’s method with diagonal jacobian approximation for systems of nonlinear equations. J Math Stat 6(3):246–252

    Article  MATH  Google Scholar 

  • Waziri MY, Leong WJ, Hassan MA (2012) Diagonal Broyden-like method for large-scale systems of nonlinear equations. Malays J Math Sci 6(1):59–73

    MathSciNet  Google Scholar 

  • Yan QR, Peng XZ, Li DH (2010) A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J Comput Appl Math 234:649–657

    Article  MathSciNet  MATH  Google Scholar 

  • Yong LQ, Liu SY, Tuo SH (2014) Transformation of linear complementarity problem and absolute value equation. J Jilin Univ 4:682–686

    MathSciNet  MATH  Google Scholar 

  • Yu Q, Huang C, Wang X (2006) A combined homotopy interior point method for the linear complementarity problem. Appl Math Comput 179(2):696–701

    MathSciNet  MATH  Google Scholar 

  • Yu Z, Lin J, Sun J, Xiao Y, Liu L, Li Z (2009) Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl Numer Math 59(10):2416–2423

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan G, Zhang M (2015) A three-terms Polak–Ribière–Polyak conjugate gradient algorithm for large-scale nonlinear equations. J Comput Appl Math 286:186–195

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan G, Duan X, Liu W, Wang X, Cui Z, Sheng Z (2015) Two new PRP conjugate gradient algorithms for minimization optimization models. PloS One 10(10):e0140071

    Article  Google Scholar 

  • Yuan G, Meng Z, Li Y (2016) A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J Optim Theory Appl 168(1):129–152

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan G, Wei Z, Lu X (2017) Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Appl Math Modell 47:811–825

    Article  MathSciNet  Google Scholar 

  • Zeidler E (2013) Nonlinear functional analysis and its applications: III: variational methods and optimization. Springer Science & Business Media, New York

    Google Scholar 

  • Zhang L, Zhou W, Li D-H (2006) A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J Numer Anal 26(4):629–640

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Zhou W, Li DH (2006) A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J Numer Anal 26(4):629–640

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou W, Li D (2007) Limited memory BFGS method for nonlinear monotone equations. J Comput Math 25(1):89–96

    MathSciNet  Google Scholar 

  • Zhu Z, Luo Z, Zeng J (2007) A new smoothing technique for mathematical programs with equilibrium constraints. Appl Math Mech 28(10):1407–1414

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund”. The first author was supported by the Petchra Pra Jom Klao Doctoral Scholarship Academic for Ph.D. Program at KMUTT. This project is supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation research Cluster (CLASSIC), Faculty of Science, KMUTT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Additional information

Communicated by Andreas Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, A.B., Kumam, P. An improved three-term derivative-free method for solving nonlinear equations. Comp. Appl. Math. 37, 6760–6773 (2018). https://doi.org/10.1007/s40314-018-0712-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0712-5

Keywords

Mathematics Subject Classification

Navigation