Skip to main content
Log in

New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we extend the model of the Korteweg–de Vries (KDV) and Korteweg–de Vries–Burger’s (KDVB) to new model time fractional Korteweg–de Vries (TFKDV) and time fractional Korteweg–de Vries-Burger’s (TFKDVB) with Liouville–Caputo (LC), Caputo–Fabrizio (CF), and Atangana-Baleanu (AB) fractional time derivative equations, respectively. We utilize the q-homotopy analysis transform method (q-HATM) to compute the approximate solutions of TFKDV and TFKDVB using LC, CF and AB in Liouville–Caputo sense. We study the convergence analysis of q-HATM by computing the Residual Error Function (REF) and finding the interval of the convergence through the h-curves. Also, we find the optimal values of h so that, we assure the convergence of the approximate solutions. The results are very effective and accurate in solving the TFKDV and TFKDVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akman T, Yildiz B, Baleanu D (2017) New discretization of caputofabrizio derivative. Comput Appl Math. https://doi.org/10.1007/s40314-017-0514-1

  • Albuohimad B, Adibi H, Kazem S (2017) A numerical solution of time-fractional coupled korteweg-de vries equation by using spectral collection method. Ain Shams Engineering Journal (In Press)

  • Algahtani OJJ (2016) Comparing the atangana-baleanu and caputo-fabrizio derivative with fractional order: Allen cahn model. Chaos, Solitons Fractals 89:552–559

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana A (2016) On the new fractional derivative and application to nonlinear fishers reaction diffusion equation. App Math Comput 273:948–956

    Article  MathSciNet  Google Scholar 

  • Atangana A, Badr STA (2015) Analysis of the keller-segel model with a fractional derivative without singular kernel. Entropy 17:4439–4453

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana A, Nieto JJ (2015) Numerical solution for the model of rlc circuit via the fractional derivative without singular kernel. Adv Mech Eng 7:1–7

    Google Scholar 

  • Atangana A, Badr STA (2016) New model of groundwater flowing within a confine aquifer: Application of caputo-fabrizio derivative. Arabian Journal of Geosciences, 2060–8. https://doi.org/10.1007/s12517-015

  • Atangana A, Secer A (2013) The time-fractional coupled-korteweg-de-vries equations, Abstract and Applied Analysis 2013, Article ID 947986, 8 pages

  • Badr STA, Atangana A (2015) Extension of the rlc electrical circuit to fractional derivative without singular kernel. Adv Mech Eng 7(6):1–6

    Google Scholar 

  • Baleanu D, Atangana A (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci 20:763–769

    Article  Google Scholar 

  • Bhrawy AH, Doha EH, Ezz-Eldien SS, Abdelkawy MA (2015) A numerical techniqe based on the shifted legendre polynomials for solving the time fractional coupled kdv equations. Calcolo 53:1–17

    Article  MATH  Google Scholar 

  • Cao W, Xu Y, Zheng Z (2018) Finite difference/collocation method for a generalized time-fractional KDV equation. Appl Sci 8(1):42

    Article  Google Scholar 

  • Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 2:1–13

    Article  Google Scholar 

  • Caputo M, Fabrizio M (2016) Applications of new time and spatial fractional derivatives with exponential kernels. Progr Fract Differ Appl 2:1–11

    Article  Google Scholar 

  • El-Ajou A, Abu Arqub O, Momani S (2015) The time-fractional coupled-korteweg-de-vries equations. J Comput Phys 293:81–95

    Article  MathSciNet  MATH  Google Scholar 

  • El-Tawil MA, Huseen SN (2012) The q-homotopy analysis method (q-ham). Int J Appl Math Mech 8:51–75

    Google Scholar 

  • El-Tawil MA, Huseen SN (2013) On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 8(10):481–497

    Article  MathSciNet  Google Scholar 

  • Etemad S, Rezapour S, Alsaedi A, Baleanu D (2016) On coupled systems of time-fractional differential problems by using a new fractional derivative. J Fun Spaces 2016:1–16

    MathSciNet  MATH  Google Scholar 

  • Feng Z (2003) Travelling wave solutions and proper solutions to the two-dimensional Burgerskortewegde Vries equation. J Phys A (Math Gen) 36:8817–8827

    Article  MATH  Google Scholar 

  • Feng Z (2007) On travelling wave solutions of the burgerskortewegde vries equation. Nonlinearity 20:343–356

    Article  MathSciNet  Google Scholar 

  • Feng Z, Zheng S, angew Z (2009) Math Phys 60:756–773

  • Gao F, Yang XJ, Mohyud-Din ST (2017) On linear viscoelasticity within general fractional derivatives without singular kernel. Thermal Sci 21:S335–S342

    Article  Google Scholar 

  • Gómez-Aguilar JF (2017) Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel. Chaos, Solitons Fractals 95:179–186

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Y (2017) Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks. Dyn Syst 32:490–503

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson RS (1970) A non-linear equation incorporating damping and dispersion. J Fluid Mech 42(1):49–60

    Article  MathSciNet  MATH  Google Scholar 

  • Kath WL, Smyth NF (1995) Soliton evolution and radiation loss for the Korteweg-de Vries equation. Phys Rev E 51(3):661–670

    Article  MathSciNet  Google Scholar 

  • Khan A, Ali Abro K, Tassaddiq A, Khan I (2017) Atangana-baleanu and caputo-fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(8):1–12

    Article  Google Scholar 

  • Koca I (2017) Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int J Optim Control: Theories Appl (IJOCTA) 8(1):17–25

    MathSciNet  Google Scholar 

  • Koca I, Atangana A (2016) Chaos in a simple nonlinear system with atangana? Baleanu derivatives with fractional order. Chaos, Solitons Fractals 1:1–18

    MathSciNet  MATH  Google Scholar 

  • Koca I, Atangana A (2016) Solutions of cattaneo-hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Thermal Sci 1:103–113

    Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil Mag 39:422–443

    Article  MATH  Google Scholar 

  • Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University

  • Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  • Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169:1186–1194

    MathSciNet  MATH  Google Scholar 

  • Mainardi F, Caputo M (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147

    Article  MATH  Google Scholar 

  • Manjarekar S, Bhadane AP (2017) Generalized elzaki-tarig transformation and its applications to new fractional derivative with non singular kernel. Progr Fract Differ Appl 3(3):227–232

    Article  Google Scholar 

  • Nieto JJ, Losada J (2015) Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl 2:87–92

    Google Scholar 

  • Owolabi KM, Atangana A (2017) Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reactiondiffusion systems. Comp Appl Math. https://doi.org/10.1007/s40314-017-0445-x

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Saad KM (2018) Comparing the caputo, caputo-fabrizio and atangana-baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. The European Physical Journal Plus 133:94

  • Sahoo S, Ray S Saha (2017) A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. Math Methods Appl Sci 40(1):106–114

    Article  MathSciNet  MATH  Google Scholar 

  • Singh J, Kumar D, Baleanu D (2017) On the analysis of chemical kinetics system pertaining to a fractional derivative with mittag-leffler type kernel. Chaos Interdiscip J Nonlinear Sci 27(10):103–113

    Article  MathSciNet  MATH  Google Scholar 

  • Singha J, Kumara D, Baleanub D (2017) A new analysis for fractionalmodel of regularized long-wave equation arising in ion acoustic plasma waves. Math Methods Appl Sci 40:5642–5653

    Article  MathSciNet  Google Scholar 

  • Yang XJ, Gao F, Srivastava HM (2017) A new computational approach for solving nonlinear local fractional PDEs. Journal of Computational and Applied Mathematics (In Press)

  • Yang XJ (2017) Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Sci 21(3):1161–1171

    Article  Google Scholar 

  • Yang XJ (2017) General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation. Thermal Sci 21:S317–S326

    Article  Google Scholar 

  • Yang XJ (2017) A new integral transform operator for solving the heat-diffusion problem. Appl Math Lett 64:193–197

    Article  MathSciNet  MATH  Google Scholar 

  • Yang XJ (2018) New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc Roman, Ser A 19(1):45–52

    MathSciNet  Google Scholar 

  • Yang XJ, Machado JAT (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A: Stat Mech Appl 481:276–283

    Article  MathSciNet  Google Scholar 

  • Yang XJ, Hristov J, Srivastava HM, Ahmad B (2014) Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation. Abstr Appl Anal 2014 278672:10

    Google Scholar 

  • Yang XJ, Machado JA Tenreiro, Baleanu D, Cattani C (2016) A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. Chaos Interdiscip J Nonlinear Sci 26(8):084312

    Article  MATH  Google Scholar 

  • Yang XJ, Baleanu D, Gao F (2017) New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space. Proc Roman Acad Ser A: Math Phys Tech Sci Inf Sci 18(3):231–238

    MathSciNet  Google Scholar 

  • Yang XJ, Machado JT, Baleanu D (2017) Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Roman Rep Phys 69(4):115

    Google Scholar 

  • Yang XJ, Srivastava HM, Torres DFM, Debbouche A (2017) General fractional-order anomalous diffusion with nonsingular power-law kernel. Thermal Sci 21(1):S1–S9

    Article  Google Scholar 

  • Zabusky NJ, Kruskal MD (1965) Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Saad.

Additional information

Communicated by José Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, K.M., Baleanu, D. & Atangana, A. New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations. Comp. Appl. Math. 37, 5203–5216 (2018). https://doi.org/10.1007/s40314-018-0627-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0627-1

Keywords

Mathematics Subject Classification

Navigation