Skip to main content
Log in

Exponential Bernstein functions: an effective tool for the solution of heat transfer of a micropolar fluid through a porous medium with radiation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this study, an effective collocation method using new weighted orthogonal basis functions on the half-line, namely the exponential Bernstein functions, is proposed for simulating the solution of the heat transfer of a micropolar fluid through a porous medium with radiation. The governing equations and their associated boundary conditions can be written as a system of nonlinear ordinary differential equations. The presented approach does not require truncating or transforming the semi-infinite domain of the problem to a finite domain. In addition, this method reduces the solution of the problem to the solution of a system of algebraic equations. The effects of the coupling constant, radiation parameter and the permeability parameter on velocity and temperature profiles will be discussed in detail and shown graphically. A comparative study with the previous results of viscous fluid in the literature is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(B_{i,n}(x)\) :

Bernstein polynomial of degree n

\(\mathfrak {B}_{i,n}(x)\) :

Orthogonal Bernstein polynomial of order n

\(\varvec{EB}_{i,n}(x;L)\) :

Exponential Bernstein function of order n

\(c_p\) :

Specific heat

f :

Dimensionless velocity function

\(G_1\) :

Microrotation constant

g :

Dimensionless microrotation angular velocity

K :

Permeability of the porous medium

\(k^{*}\) :

Mean absorption coefficient

\(k_1\) :

Coupling constant

L :

Positive scaling/stretching factor

\(q_r\) :

Radiant heat flux

S :

Constant characteristic to the fluid

T :

Temperature distribution

\(U_0\) :

Uniform stream velocity

u :

Velocity component in the x direction

v :

Velocity component in the y direction

x :

Horizontal coordinate

y :

Vertical coordinate

Pr :

Prandtl number

\(\rho \) :

Fluid density

\(\mu \) :

Dynamical viscosity

\(\nu \) :

Kinematic viscosity

\(\sigma \) :

Angular velocity

\(\eta \) :

Similarity variable

\(\sigma ^{*}\) :

Stefan–Boltzmann constant

\(\theta \) :

Dimensionless temperature

\(\varphi \) :

Porosity

w :

Conditions at the surface

\(\infty \) :

Conditions far away from the surface

n :

Order of approximation

\(^\prime \) :

Differentiation with respect to \(\eta \)

References

  • Abo-Eldahab EM, El Aziz MA (2005) Flow and heat transfer in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free stream. Appl Math Comput 162:881–899

    MathSciNet  MATH  Google Scholar 

  • Abo-Eldahab EM, Ghonaim AF (2005) Radiation effect on heat transfer of a micropolar fluid through a porous medium. Appl Math Comput 169:500–510

    MathSciNet  MATH  Google Scholar 

  • Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646

    Article  MATH  Google Scholar 

  • Ariman T, Turk MA, Sylvester ND (1973) Microcontinuum fluid mechanics-areview. Int J Eng Sci 11:905–930

    Article  MATH  Google Scholar 

  • Bhatta DD, Bhatti MI (2006) Numerical solution of KdV equation using modified Bernstein polynomials. Appl Math Comput 174:1255–1268

    MathSciNet  MATH  Google Scholar 

  • Bhattacharya S, Mandal BN (2008) Use of Bernstein polynomials in numerical solutions of Volterra integral equations. Appl Math Sci 2:1773–1787

    MathSciNet  MATH  Google Scholar 

  • Bhatti MI, Bracken P (2007) Solutions of differential equations in a Bernstein polynomial basis. J Comput Appl Math 205:272–280

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd JP (1982) The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J Comput Phys 45:43–79

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd JP (2001) Chebyshev and Fourier spectral methods, 2nd edn. Dover Publications Inc., Mineola

    MATH  Google Scholar 

  • Chakrabarti A, Martha SC (2009) Approximate solutions of Fredholm integral equations of the second kind. Appl Math Comput 211:459–466

    MathSciNet  MATH  Google Scholar 

  • Civalek O (2007) Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods. Appl Math Model 31:606–624

    Article  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Saker MA (2011a) On the derivatives of bernstein polynomials: an application for the solution of high even-order differential equations. Bound Value Probl 2011:1–16, Art. ID 829543

  • Doha EH, Bhrawy AH, Saker MA (2011b) Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Appl Math Lett 24:559–565

    Article  MathSciNet  MATH  Google Scholar 

  • Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6:19–26

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–217

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  • Eringen AC (1972) Theory of termomicrofluids. J Math Anal Appl 38:480–496

    Article  MATH  Google Scholar 

  • Farouki RT, Goodman TNT (1996) On the optimal stability of Bernstein basis. Math Comput 65:1553–1566

    Article  MathSciNet  MATH  Google Scholar 

  • Ganji SS, Ganji DD, Sfahani MG, Karimpour S (2010) Application of AFF and HPM to the systems of strongly nonlinear oscillation. Curr Appl Phys 10:1317–1325

    Article  Google Scholar 

  • Ganji SS, Ganji DD, Davodi AG, Karimpour S (2010) Analytical solution to nonlinear oscillation system of the motion of a rigid rod rocking back using max-min approach. Appl Math Modell 34:2676–2684

    Article  MathSciNet  MATH  Google Scholar 

  • Ganji SS, Barari A, Ganji DD (2011) Approximate analyses of two mass-spring systems and buckling of a column. Comput Math Appl 61:1088–1095

    Article  MathSciNet  MATH  Google Scholar 

  • Gorla RSR (1992) Mixed convection in a micropolar fluid from a vertical surface with uniform heat flux. Int J Eng Sci 30:349–358

    Article  Google Scholar 

  • He JH (1999) Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 34:699–708

    Article  MATH  Google Scholar 

  • He JH (2000) Variational iteration method for autonomous ordinary differential systems. Appl Math Comput 114:115–123

    MathSciNet  MATH  Google Scholar 

  • He JH (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135:73–79

    MathSciNet  MATH  Google Scholar 

  • He JH (2004) The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 151:287–292

    MathSciNet  MATH  Google Scholar 

  • He JH (2006) Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals 30:700–708

    Article  MathSciNet  MATH  Google Scholar 

  • He JH, Abdou MA (2007) New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons Fractals 34:1421–1429

    Article  MathSciNet  MATH  Google Scholar 

  • Ibrahim FS, Hassanien IA, Bakr AA (2004) Unsteady magnetohydrodynamic micropolar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source. Can J Phys 82:775–790

    Article  Google Scholar 

  • Karmishin AV, Zhukov AI, Kolosov VG (1990) Methods of dynamics calculation and testing for thin-walled structures. Mashinostroyenie, Moscow

    Google Scholar 

  • Kim YJ (2001) Unsteady convection flow of micropolar fluids past a vertical plate embedded in a porous medium. Acta Mech 148:105–116

    Article  MATH  Google Scholar 

  • Kim YJ (2004) Heat and mass transfer in MHD micropolar flow over a vertical moving plate in a porous medium. Trans Porous Media 56:17–37

    Article  Google Scholar 

  • Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New York

    MATH  Google Scholar 

  • Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Hall/CRCPress, Boca Raton

    Book  Google Scholar 

  • Maleknejad K, Hashemizadeh E, Ezzati R (2011) A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation. Commun Nonlinear Sci Numer Simulat 16:647–655

    Article  MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Hashemizadeh E, Basirat B (2012) Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. Commun Nonlinear Sci Numer Simulat 17:52–61

    Article  MathSciNet  MATH  Google Scholar 

  • Mandal BN, Bhattacharya S (2007) Numerical solution of some classes of integral equations using Bernstein polynomials. Appl Math Comput 190:1707–1716

    MathSciNet  MATH  Google Scholar 

  • Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

    MATH  Google Scholar 

  • Raptis A (1998) Flow of a micropolar fluid past a continuously moving plate by the presence of radiation. Int J Heat Mass Transf 41:2865–2866

    Article  MATH  Google Scholar 

  • Raptis A, Perdikis C, Takhar HS (2004) Effect of thermal radiation on MHD flow. Appl Math Comput 153:645–649

    MathSciNet  MATH  Google Scholar 

  • Rashidi MM, Mohimanian pour SA, Abbasbandy S (2011) Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun Nonlinear Sci Numer Simulat 16:1874–1889

    Article  Google Scholar 

  • Rashidi MM, Mohimanian Pour SA (2010) A novel analytical solution of heat transfer of a micropolar fluid through a porous medium with radiation by DTM-Padé. Heat Trans Asian Res 39:575–589

    Article  Google Scholar 

  • Ravi ASV, Kanth YN, Reddy A (2003) numerical method for solving two-point boundary value problems over infinite intervals. Appl Math Comput 144:483–494

    MathSciNet  MATH  Google Scholar 

  • Rees DAS, Pop I (1998) Free convection boundary layer flow of micropolar fluid from a vertical flat Plat. IMA J Appl Math 61:179–197

    Article  MathSciNet  MATH  Google Scholar 

  • Rostamy D, Karimi K (2012) Bernstein polynomials for solving fractional heat- and wave-like equations. Fract Calc Appl Anal 15:556–571

    Article  MathSciNet  MATH  Google Scholar 

  • Shahzad F, Sajid M, Hayat T, Ayub M (2007) Analytic solution for flow of a micropolar fluid. Acta Mech 188:93–102

    Article  MATH  Google Scholar 

  • Singh AK (2002) Numerical solution of unsteady free convection flow of an incompressible micropolar fluid past an infinite vertical plate with temperature gradient dependent heat source. J Energy Heat Mass Transf 24:185–194

    Google Scholar 

  • Singh AK, Singh VK, Singh OP (2009) The Bernstein operational matrix of integration. Appl Math Sci 3:2427–2436

    MathSciNet  MATH  Google Scholar 

  • Snyder MA (1966) Chebyshev methods in numerical approximation. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  • Soundalgekar VM, Takhar HS (1983) Flow of a micropolar fluid on a continuous moving plate. Int J Eng Sci 21:961–965

    Article  Google Scholar 

  • Wang M, Li X (2005) Applications of F-expansion to periodic wave solutions fo a new Hamiltonian amplitude equation. Chaos, Solitons Fractals 24:1257–1268

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Liao SJ, Pop I (2006) Series solutions of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface. Acta Mech 184:87–101

    Article  MATH  Google Scholar 

  • Yousefi SA, Behroozifar M, Dehghan M (2011) The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass. J Comput Appl Math 235:5272–5283

    Article  MathSciNet  MATH  Google Scholar 

  • Yousefi SA, Behroozifar M, Dehghan M (2012) Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials. Appl Math Model 36:945–963

    Article  MathSciNet  MATH  Google Scholar 

  • Yousefi SA, Behroozifar M (2010) Operational matrices of Bernstein polynomials and their applications. Int J Syst Sci 41:709–716

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heydari.

Additional information

Communicated by Philippe Devloo.

Appendix A: Basic idea of Liaos Homotopy analysis method (HAM) (Liao 2003)

Appendix A: Basic idea of Liaos Homotopy analysis method (HAM) (Liao 2003)

Consider the following nonlinear differential equation in form of

$$\begin{aligned} N[u( t)]=0, \end{aligned}$$
(96)

where N is a nonlinear operator, t is an independent variable and \(u\left( t\right) \) is the solution of equation. By means of generalizing the conventional Homotopy method, Liao constructed the so-called zero-order deformation equation as:

$$\begin{aligned} (1-q)L\left[ \Phi ( t;q) -u_{0}\left( t\right) \right] =qhH(t)N[\Phi ( t;q)], \end{aligned}$$
(97)

where \(q\in \left[ 0,1\right] \) is an embedding parameter, \(h\ne 0\) is a nonzero auxiliary parameter, \(H\left( t\right) \ne 0\) is an auxiliary function, L is an auxiliary linear operator with the property

$$\begin{aligned} L\left[ f\right] =0 \quad \mathbf{when } f=0, \end{aligned}$$
(98)

\(u_{0}(t) \) is an initial guess of u( t) and \(\Phi \left( t;q\right) \) is an unknown function on the independent variables t and q. Obviously, when \(q=0\) and \(q=1\), it holds

$$\begin{aligned} \Phi ( t;0) =u_{0}\left( t\right) ,\quad \Phi ( t;1)=u\left( t\right) , \end{aligned}$$
(99)

respectively. Thus, as q increases from 0 to 1, the solution \(\Phi ( t;q) \) varies from the initial guess \(u_{0}(t)\) to the solution u(t) . Using the parameter q , we expand \(\Phi \left( t;q\right) \) in Taylor series as follows:

$$\begin{aligned} \Phi ( t;q) =u_{0}(t)+\sum _{m=1}^{+\infty }u_{m}( t)q^{m}, \end{aligned}$$
(100)

where

$$\begin{aligned} u_{m}( t)=\frac{1}{m!}\frac{\partial ^{m}\Phi (t;q) }{\partial q^{m}}\Bigg |_{q=0}. \end{aligned}$$
(101)

Assume that auxiliary linear operator, the initial guess, the controlling convergence parameter h , and the auxiliary function H(t) are chosen such that the series (100) converges at \(q=1\). So, from (99) and (100), we have

$$\begin{aligned} u(t) =u_{0}(t)+\sum _{m=1}^{+\infty }u_{m}( t). \end{aligned}$$
(102)

Define the vector

$$\begin{aligned} \mathbf {u}_{n}=\left\{ u_{0},u_{1},\ldots ,u_{n}\right\} . \end{aligned}$$

Differentiating (97) for m times with respect to the embedding parameter q and then setting \(q=0\) and finally dividing them by m! , we have the so-called mth-order deformation equation

$$\begin{aligned} L\left[ u_{m}(t)-\chi _{m}u_{m-1}(t)\right] =hH(t)R_{m}\left( \mathbf {u}_{m-1}(t)\right) , \end{aligned}$$
(103)

where

$$\begin{aligned} R_{m}(\mathbf {u}_{m}(t)) =\frac{1}{(m-1)!}\frac{\partial ^{m-1}\left\{ N \Phi ( t;q)\right\} }{\partial q^{m-1}}\Bigr |_{q=0}, \end{aligned}$$
(104)

and

$$\begin{aligned} \chi _{m}=\Big \{ \begin{array}{ll} 0, &{}\quad m\le 1, \\ 1, &{}\quad m>1. \end{array} \end{aligned}$$

Applying \(L^{-1}\) on both sides of (103), we get

$$\begin{aligned} u_m(t)=\chi _{m}u_{m-1}(t)+hL^{-1}[H(t)R_{m}(\mathbf {u}_{m-1}(t))]. \end{aligned}$$
(105)

In this way, it is easy to obtain \(u_m\) for \(m\ge 1\), at Mth order; we have

$$\begin{aligned} u(t) =\sum _{m=0}^{M}u_{m}( t). \end{aligned}$$
(106)

When \(M\rightarrow +\infty \), we get an accurate approximation of the original Eq. (96). For the convergence of the previous method, we refer the reader to Liao (2003). Rashidi and Mohimanian Pour (2011) implemented the above method for solving heat transfer problem of a micropolar fluid through a porous medium with radiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M., Loghmani, G.B. & Hosseini, S.M. Exponential Bernstein functions: an effective tool for the solution of heat transfer of a micropolar fluid through a porous medium with radiation. Comp. Appl. Math. 36, 647–675 (2017). https://doi.org/10.1007/s40314-015-0251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0251-2

Keywords

Mathematics Subject Classification

Navigation