Skip to main content

Advertisement

Log in

Multivariable Greenhouse Control Using the Filtered Smith Predictor

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The increasing demand for high-efficiency greenhouse control systems motivates the interest in ensuring optimal growth climate conditions into the system. The greenhouse climate control is complex because of the strong coupling between the two main controlled variables (temperature and humidity), the time delays present within the control loop and the high nonlinear interaction between the physical and the biological subsystems. In this context, the idea of this work is to improve the robust behavior of the Filtered Smith Predictor (FSP) in an equivalent greenhouse climate model with multiple time delays as a function of the uncertainty degree of the process model to be controlled. An automated tuning technique is proposed for the robustness filter of MIMO-FSP through online estimation of the modeling error. Simulation results show that the proposed technique is able to improve disturbance rejection dynamics while assuring robust stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aguirre, L. A. (2001). Introduç ao à Identificaç ao de Sistemas: Técnicas Lineares e N ao-Lineares Aplicadas a Sistemas Reais (Introduction to System Identification: linear and nonlinear methods applied to real systems). Belo Horizonte: UFMG.

    Google Scholar 

  • Albright, L. D., Gates, R. S., Arvanitis, K. G., & Drysdale, A. (2001). Environmental control for plants on Earth and in space. IEEE Control System Magazine, 21(5), 28–47.

    Article  Google Scholar 

  • Alevisakis, G., & Seborg, D. E. (1973). An extension of the Smith predictor method to multivariable linear systems containing time delays. International Jornal Control, 17(3), 541–551.

    Article  Google Scholar 

  • Azaza, M., Echaieb, K., Mami, A., & Iqbal, A. (2014). Optimized micro-climate controller of a greenhouse powered by photovoltaic generator. In: Renewable energy congress (IREC), 2014 5th international, pp. 1–5.

  • Flesch, R. C. C., Torrico, B. C., Normey-Rico, J. E., & Cavalcante, M. U. (2011). Unified approach for minimal output dead time compensation in MIMO processes. Journal of Process Control, 21(7), 1080–1091.

    Article  Google Scholar 

  • Garrido, J., Vázquez, F., Morilla, F., & Normey-Rico, J. E. (2016). Smith predictor with inverted decoupling for square multivariable time delay systems. International Journal of Systems Science, 47(2), 374–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonçalves, R., & Santos, T.L.M. (2015). Sintonia automatizada do filtro de robustez para o controle de sistemas com atraso (Automated tuning of robustness filter for control systems with delays). In: XII Simpósio Brasileiro de Automaç ao Inteligente (SBAI).

  • Gurban, E.H., & Andreescu, G. (2012). Comparison study of \(PID\) controller tuning for greenhouse climate with feedback-feedforward linearization and decoupling. In: System Theory, Control and Computing (ICSTCC), 2012, pp. 1-6.

  • Jerome, N. F., & Ray, W. H. (1986). High performance multivariable control strategies for systems having time delays. AIChE Journal, 32(6), 914–931.

    Article  Google Scholar 

  • Landau, I. D., & Zito, G. (2006). Digital control system. Berlin: Springer.

    Google Scholar 

  • Merle, H. J., & Alan, J. M. (1995). Protected Agriculture: A Global Review. World Bank Technical Paper, 23(15), 157.

    Google Scholar 

  • Normey-Rico, J. E., & Camacho, E. F. (2007). Control of dead-time processes. London: Springer.

    MATH  Google Scholar 

  • Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407–428.

  • Normey-Rico, J. E., Sartori, R., Veronesi, M., & Visioli, A. (2014). An automatic tuning methodology for a unified dead-time compensator. Control Engineering Practice, 27, 11–22.

    Article  Google Scholar 

  • Ogunnaike, B. A., & Ray, W. H. (1979). Multivariable controller design for linear systems having multiple time delays. AIChE Journal, 25(6), 1043–1060.

    Article  Google Scholar 

  • Palmor, Z. J. (1996). Time-delay compensation—Smith predictor and its modifications. In: CRC and IEEE Press, Boca Raton, (pp. 224—237)

  • Pasgianos, G. D., Arvanitis, K. G., Polycarpou, P., & Sigrimis, N. (2003). A nonlinear feedback technique for greenhouse environmental control. Computers and Electronics in Agriculture, 40, 153–177.

    Article  Google Scholar 

  • Santos, T. L. M., Flesch, R. C. C., & Normey-Rico, J. L. (2014). On the filtered Smith predictor for MIMO processes with multiple time delays. Journal of Process Control, 24(4), 383–400.

    Article  Google Scholar 

  • Skogestad, S., & Postlethwaite, I. (2001). Multivariable feedback control: Analysis and design. Hoboken: wiley.

    MATH  Google Scholar 

  • Smith, O. J. M. (1957). Closer control of loops with dead time. Chemical Engineering Progress, 53(5), 217–219.

    Google Scholar 

Download references

Acknowledgments

Financial support from the Brazilian funding agencies CAPES and CNPq is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Castaño Giraldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldo, S.A.C., Flesch, R.C.C. & Normey-Rico, J.E. Multivariable Greenhouse Control Using the Filtered Smith Predictor. J Control Autom Electr Syst 27, 349–358 (2016). https://doi.org/10.1007/s40313-016-0250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0250-6

Keywords

Navigation