Skip to main content
Log in

Role of Circulating Cell-Free DNA in Cancers

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Liquid biopsy is a term used to describe non-invasive tests, which provide information about disease conditions through analysis of circulating cell-free DNA and circulating tumor cells from peripheral blood samples. In patients with cancer, the concentration of cell-free DNA increases, and structural, sequence, and epigenetic changes to DNA can be observed through the disease process and during therapy. Furthermore, cell-free DNA released by the tumor contains the same variants as those in the tumor cells. Therefore, cell-free DNA allows non-invasive assessment of cancer in real time. This review summarizes the origin of cell-free DNA, recent advancements in the detection of cell-free DNA, a possible role in metastasis, and its importance as a non-invasive diagnostic assay for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. C R Acad Sci Paris. 1948;142:241–3.

    CAS  Google Scholar 

  2. Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol. 2010;12:173–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  4. Holdenrieder S, Stieber P, Bodenmüller H, Busch M, Fertig G, Fürst H, et al. Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer (Pred Oncol). 2001;95:114–20.

    Article  CAS  Google Scholar 

  5. Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 2001;61:4675–8.

    CAS  PubMed  Google Scholar 

  6. Chang H-W. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. Cancer Spectrum Knowl Environ. 2002;94:1697–703.

    CAS  Google Scholar 

  7. Herrera LJL, Raja S, Gooding WE, El-Hefnawy T, Kelly L, Luketich JD, et al. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clin Chem. 2005;51:113–8.

    Article  CAS  PubMed  Google Scholar 

  8. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol. 2011;5:281–91.

    Article  CAS  PubMed  Google Scholar 

  9. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;133:346–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014;25:1729–35.

    Article  PubMed  Google Scholar 

  11. Schwarz AK, Stanulla M, Cario G, Flohr T, Sutton R, Möricke A, et al. Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia. Ann Hematol. 2009;88:897–905.

    Article  CAS  PubMed  Google Scholar 

  12. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection of cancer DNA in plasma of early-stage breast cancer. Clin Cancer Res 2014;20:2643–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Yung TKF, Chan KCA, Mok TSK, Tong J, To K-FF, Lo YMD. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res. 2009;15:2076–84.

    Article  CAS  PubMed  Google Scholar 

  15. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  CAS  PubMed  Google Scholar 

  17. Peters DL, Pretorius PJ. Origin, translocation and destination of extracellular occurring DNA—a new paradigm in genetic behaviour. Clin Chim Acta. 2011;412:806–11.

    Article  CAS  PubMed  Google Scholar 

  18. Tamkovich SN, Cherepanova AV, Kolesnikova EV, Rykova EY, Pyshnyi DV, Vlassov VV, et al. Circulating DNA and DNase activity in human blood. Ann N Y Acad Sci. 2006;1075:191–6.

    Article  CAS  PubMed  Google Scholar 

  19. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Roth C, Pantel K, Müller V, Rack B, Kasimir-Bauer S, Janni W, et al. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer. 2011;11:4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mueller S, Holdenrieder S, Stieber P, Haferlach T, Schalhorn A, Braess J, et al. Early prediction of therapy response in patients with acute myeloid leukemia by nucleosomal DNA fragments. BMC Cancer. 2006;6:143.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kremer A, Wilkowski R, Holdenrieder S, Nagel D, Stieber P, Seidel D. Nucleosomes in pancreatic cancer patients during radiochemotherapy. Tumour Biol. 2005;26:44–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kremer A, Holdenrieder S, Stieber P, Wilkowski R, Nagel D, Seidel D. Nucleosomes in colorectal cancer patients during radiochemotherapy. Tumour Biol. 2006;27:235–42.

    Article  CAS  PubMed  Google Scholar 

  25. Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, et al. Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2004;10:5981–7.

    Article  CAS  PubMed  Google Scholar 

  26. Holmgren L, Szeles A, Rajnavölgyi E, Folkman J, Klein G, Ernberg I, et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood. 1999;93:3956–63.

    CAS  PubMed  Google Scholar 

  27. Tickner JA, Urquhart AJ, Stephenson S-A, Richard DJ, O’Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct. 2010;28:529–38.

    Article  CAS  PubMed  Google Scholar 

  29. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch R-D, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    CAS  PubMed  Google Scholar 

  30. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102:16368–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. García-Olmo DC, Ruiz-Piqueras R, García-Olmo D. Circulating nucleic acids in plasma and serum (CNAPS) and its relation to stem cells and cancer metastasis: state of the issue. Histol Histopathol. 2004;19:575–83.

    PubMed  Google Scholar 

  32. Vogel TJ, DelloRusso C, Welcsh P, Shah CA, Goff BA, Garcia RL, et al. Angiogenic alterations associated with circulating neoplastic DNA in ovarian carcinoma. Transl Oncol. 2012;5:247–51.

    Article  PubMed Central  PubMed  Google Scholar 

  33. García-Olmo D, García-Olmo DC, Ontañón J, Martinez E, Vallejo M. Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histol Histopathol. 1999;14:1159–64.

    PubMed  Google Scholar 

  34. García-Olmo DCDDC, Domínguez C, García-Arranz M, Anker P, Stroun M, García-Verdugo JM. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res. 2010;70:560–7.

    Article  PubMed  CAS  Google Scholar 

  35. Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Anker P, Herrera-Goepfert R, Medina-Velázquez LA, et al. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One. 2012;7:e52754.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Abdouh M, Zhou S, Arena V, Arena M, Lazaris A, Onerheim R, et al. Transfer of malignant trait to immortalized human cells following exposure to human cancer serum. J Exp Clin Cancer Res. 2014;33:86.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19.

    Article  CAS  PubMed  Google Scholar 

  38. Hohaus S, Giachelia M, Massini G, Mansueto G, Vannata B, Bozzoli V, et al. Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann Oncol. 2009;20:1408–13.

    Article  CAS  PubMed  Google Scholar 

  39. Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, et al. Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin Chim Acta. 2011;412:2141–5.

    Article  CAS  PubMed  Google Scholar 

  40. Mouliere F, Robert B, Peyrotte EA, Rio MD, Ychou M, Molina F, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One. 2011;6(9):e23418.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci. 1996;93:9821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wong IHN, Zhang J, Lai PBS, Lau WY, Lo YMD. Quantitative analysis of tumor-derived methylated p16INK4a sequences in plasma, serum, and blood cells of hepatocellular carcinoma patients. Clin Cancer Res. 2003;9:1047–52.

    CAS  PubMed  Google Scholar 

  43. Chan KCA, Lai PBS, Mok TSK, Chan HLY, Ding C, Yeung SW, et al. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin Chem. 2008;54:1528–36.

    Article  CAS  PubMed  Google Scholar 

  44. Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol. 2006;24:4262–9.

    Article  CAS  PubMed  Google Scholar 

  45. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA. 1999;96:9236–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gevensleben H, Garcia-Murillas I, Graeser MK, Schiavon G, Osin P, Parton M, et al. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res. 2013;19:3276–84.

    Article  CAS  PubMed  Google Scholar 

  47. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59:1722–31.

    Article  CAS  PubMed  Google Scholar 

  48. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2:20ra14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra154.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rothé F, Laes J-F, Lambrechts D, Smeets D, Vincent D, Maetens M, et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol. 2014;25:1959–65.

    Article  PubMed  Google Scholar 

  52. Mohan S, Heitzer E, Ulz P, Lafer I, Lax S, Auer M, et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10:e1004271.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J, et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 2011;17:7808–15.

    Article  CAS  PubMed  Google Scholar 

  54. Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18:3462–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nielsen PE, Egholm M. An introduction to peptide nucleic acid. Curr Issues Mol Biol. 1999;1:89–104.

    CAS  PubMed  Google Scholar 

  56. Kim H-R, Lee SY, Hyun D-S, Lee MK, Lee H-K, Choi C-M, et al. Detection of EGFR mutations in circulating free DNA by PNA-mediated PCR clamping. J Exp Clin Cancer Res. 2013;32:50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Däbritz J, Hänfler J, Preston R, Stieler J, Oettle H. Detection of Ki-ras mutations in tissue and plasma samples of patients with pancreatic cancer using PNA-mediated PCR clamping and hybridisation probes. Br J Cancer. 2005;92:405–12.

    PubMed Central  PubMed  Google Scholar 

  58. Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol. 2003;21:3902–8.

    Article  CAS  PubMed  Google Scholar 

  59. Gal S, Fidler C, Lo YMD, Taylor M, Han C, Moore J, et al. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br J Cancer. 2004;90:1211–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Al-Shuneigat JM, Mahgoub SS, Huq F. Colorectal carcinoma: nucleosomes, carcinoembryonic antigen and ca 19-9 as apoptotic markers; a comparative study. J Biomed Sci. 2011;18:50.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mussolin L, Burnelli R, Pillon M, Carraro E, Farruggia P, Todesco A, et al. Plasma cell-free DNA in paediatric lymphomas. J Cancer. 2013;4:323–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, Chassé E, et al. Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol. 2004;22:4157–64.

    Article  CAS  PubMed  Google Scholar 

  63. Tomita H, Ichikawa D, Ikoma D, Sai S, Tani N, Ikoma H, et al. Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res. 2007;27:2737–41.

    CAS  PubMed  Google Scholar 

  64. Trejo-Becerril C, Pérez-Cárdenas E, Treviño-Cuevas H, Taja-Chayeb L, García-López P, Segura-Pacheco B, et al. Circulating nucleosomes and response to chemotherapy: an in vitro, in vivo and clinical study on cervical cancer patients. Int J Cancer. 2003;104:663–8.

    Article  CAS  PubMed  Google Scholar 

  65. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res. 2014;16:421.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Shapiro B, Chakrabarty M, Cohn EM, Leon SA, Vegas L, Servi P. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51:2116–20.

    Article  CAS  PubMed  Google Scholar 

  67. Kamat AA, Baldwin M, Urbauer D, Dang D, Han LY, Godwin A, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116:1918–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Yoon K-A, Park S, Lee SH, Kim JH, Lee JS. Comparison of circulating plasma DNA levels between lung cancer patients and healthy controls. J Mol Diagn. 2009;11:182–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mouliere F, El Messaoudi S, Gongora C, Guedj A-S, Robert B, Del Rio M, et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 2013;6:319–28.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci. 2015;112:201500076.

    Google Scholar 

  71. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, et al. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol. 2006;24:4270–6.

    Article  CAS  PubMed  Google Scholar 

  72. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.

    Article  CAS  PubMed  Google Scholar 

  73. Douillard J-Y, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer. 2014;110:55–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Marcq M, Vallée A, Bizieux A, Denis MG. Detection of EGFR mutations in the plasma of patients with lung adenocarcinoma for real-time monitoring of therapeutic response to tyrosine kinase inhibitors? J Thorac Oncol. 2014;9:e49–50.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kimura H, Suminoe M, Kasahara K, Sone T, Araya T, Tamori S, et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer. 2007;97:778–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Holdhoff M, Schmidt K, Donehower R, Diaz LA. Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J Natl Cancer Inst. 2009;101:1284–5.

    Article  PubMed  Google Scholar 

  77. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14:18925–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2:1035–7.

    Article  CAS  PubMed  Google Scholar 

  79. Chen XQ, Stroun M, Magnenat J-L, Nicod LP, Kurt A-M, Lyautey J, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996;2:1033–5.

    Article  CAS  PubMed  Google Scholar 

  80. Taback B, Fujiwara Y, Wang H-J, Foshag LJ, Morton DL, Hoon DSB. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res. 2001;61:5723–6.

    CAS  PubMed  Google Scholar 

  81. Fujiwara Y, Chi DDJ, Wang H, Keleman P, Morton DL, Turner R, et al. Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res. 1999;59:1567–71.

    CAS  PubMed  Google Scholar 

  82. Hamana K, Uzawa K, Ogawara K, Shiiba M, Bukawa H, Yokoe H, et al. Monitoring of circulating tumour-associated DNA as a prognostic tool for oral squamous cell carcinoma. Br J Cancer. 2005;92:2181–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Kakimoto Y, Yamamoto N, Shibahara T. Microsatellite analysis of serum DNA in patients with oral squamous cell carcinoma. Oncol Rep. 2008;20:1195–200.

    CAS  PubMed  Google Scholar 

  84. Sunami E, Shinozaki M, Higano CS, Wollman R, Dorff TB, Tucker SJ, et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem. 2009;55:559–67.

    Article  CAS  PubMed  Google Scholar 

  85. Hickey KP, Boyle KP, Jepps HM, Andrew AC, Buxton EJ, Burns PA. Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br J Cancer. 1999;80:1803–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2:S4–11.

    Article  CAS  PubMed  Google Scholar 

  87. Wong IHN, Zhang J, Lai PBS, Lau WY, Lo YMD. Quantitative analysis of tumor-derived methylated p16INK4a sequences in plasma, serum, and blood cells of hepatocellular carcinoma patients. Clin Cancer Res. 2003;9:1047–52.

    CAS  PubMed  Google Scholar 

  88. Majchrzak-Celińska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska A-MM, Nowak S, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet. 2013;54:335–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Wong IHN, Dennis Lo YM, Zhang J, Liew C-T, Ng MHL, Wong N, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999;59:71–3.

    CAS  PubMed  Google Scholar 

  90. Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003;63:7641–5.

    PubMed  Google Scholar 

  91. Silva JM, Dominguez G, Villanueva MJ, Gonzalez R, Garcia JM, Corbacho C, et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer. 1999;80:1262–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. An Q, Liu Y, Gao Y, Huang J, Fong X, Li L, et al. Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett. 2002;188:109–14.

    Article  CAS  PubMed  Google Scholar 

  93. Hibi K, Taguchi M, Nakayama H, Takase T, Kasai Y, Ito K, et al. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2001;7:3135–8.

    CAS  PubMed  Google Scholar 

  94. Nakayama H, Hibi K, Taguchi M, Takase T, Yamazaki T, Kasai Y, et al. Molecular detection of p16 promoter methylation in the serum of colorectal cancer patients. Cancer Lett. 2002;188:115–9.

    Article  CAS  PubMed  Google Scholar 

  95. Deligezer U, Yaman F, Erten N, Dalay N. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta. 2003;335:89–94.

    Article  CAS  PubMed  Google Scholar 

  96. Wong IHN, Lo YMD, Yeo W, Lau WY, Johnson PJ. Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res. 2000;6:3516–21.

    CAS  PubMed  Google Scholar 

  97. Wong T-S, Man MW-L, Lam AK-Y, Wei WI, Kwong Y-L, Yuen APW. The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. Eur J Cancer. 2003;39:1881–7.

    Article  CAS  PubMed  Google Scholar 

  98. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum dna from non-small cell lung cancer patients. Cancer Res. 1999;59:67–70.

    CAS  PubMed  Google Scholar 

  99. Rosas SLB, Koch W, da Costa Carvalho MDG, Wu L, Califano J, Westra W, et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 2001;61(3):939–42.

    CAS  PubMed  Google Scholar 

  100. Sanchez-Cespedes M, Esteller M, Wu L, Nawroz-Danish H, Yoo GH, Koch WM, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000;60:892–5.

    CAS  PubMed  Google Scholar 

  101. Usadel H, Brabender J, Danenberg KD, Jeronimo C, Harden S, Engles J, et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma dna of patients with lung cancer. Cancer Res. 2002;62:371–5.

    CAS  PubMed  Google Scholar 

  102. Avraham A, Uhlmann R, Shperber A, Birnbaum M, Sandbank J, Sella A, et al. Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer. 2012;131:E1166–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Mori T, O’Day SJ, Umetani N, Martinez SR, Kitago M, Koyanagi K, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23:9351–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Müller HM, Widschwendter A, Fiegl H, Marth C, Widschwendter M. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003;63(22):7641–5.

    PubMed  Google Scholar 

  105. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009;100:1277–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Matuschek C, Bölke E, Lammering G, Gerber PA, Peiper M, Budach W, et al. Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur J Med Res. 2010;15:277–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Skvortsova TE, Rykova EY, Tamkovich SN, Bryzgunova OE, Starikov AV, Kuznetsova NP, et al. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer. 2006;94:1492–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Zhou L, Liu J, Luo F. Serum tumor markers for detection of hepatocellular carcinoma. World J Gastroenterol. 2006;12:1175–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Philipp AB, Nagel D, Stieber P, Lamerz R, Thalhammer I, Herbst A, et al. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer. BMC Cancer. 2014;14:245.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Wallner M, Herbst A, Behrens A, Crispin A, Stieber P, Göke B, et al. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res. 2006;12:7347–52.

    Article  CAS  PubMed  Google Scholar 

  111. Ostrow KL, Hoque MO, Loyo M, Brait M, Greenberg A, Siegfried JM, et al. Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR. Clin Cancer Res. 2010;16:3463–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Ling Z-QQ, Lv P, Lu X-XX, Yu J-LL, Han J, Ying LSS, et al. Circulating methylated XAF1 DNA indicates poor prognosis for gastric cancer. PLoS One. 2013;8:67195.

    Article  CAS  Google Scholar 

  113. Raja UM, Gopal G, Rajkumar T. Intragenic DNA methylation concomitant with repression of ATP4B and ATP4A gene expression in gastric cancer is a potential serum biomarker. Asian Pac J Cancer Prev. 2012;13:5563–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangarajan Rajkumar.

Ethics declarations

The authors, Raghu Aarthy, Samson Mani, Sridevi Velusami, Shirley Sundarsingh, and Thangarajan Rajkumar, have no conflicts of interest to declare. This review was supported by the Department of Science and Technology, Govt. of India [No. SR/S9/Z-08/2010 dated 25.06.2010].

Additional information

R. Aarthy and S. Mani have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarthy, R., Mani, S., Velusami, S. et al. Role of Circulating Cell-Free DNA in Cancers. Mol Diagn Ther 19, 339–350 (2015). https://doi.org/10.1007/s40291-015-0167-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-015-0167-y

Keywords

Navigation