Skip to main content
Log in

Biomarker Tests for Risk Assessment in Coronary Artery Disease: Will They Change Clinical Practice?

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The clinical significance and economic impact of coronary artery disease has triggered major research efforts into the discovery of novel biomarkers for risk stratification in primary and secondary prevention and then the development of assays suitable for routine measurement. Nevertheless, the clinical impact of these novel biomarkers for risk stratification is still limited because they do not add substantially to traditional risk factors and they only modestly—even with a multimarker approach—improve risk stratification and patient reclassification. The most useful markers appear to be high-sensitivity C-reactive protein, natriuretic peptides, and, eventually, high-sensitivity cardiac troponins. Further research is clearly needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roger VL, Go AS, Llod-Jones DM, et al. Executive summary: heart disease and stroke statistics—2012 Update. Circulation. 2012;125:188–97.

    Article  PubMed  Google Scholar 

  2. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple cardiovascular risk factors and atherosklerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.

    Article  CAS  PubMed  Google Scholar 

  3. Nemetz PN, Roger VL, Ransom JE, et al. Recent trends in the prevalence of coronary disease: a population-based autopsy study of nonnatural deaths. Arch Intern Med. 2008;168:264–70.

    Article  PubMed  Google Scholar 

  4. Libby P, Ridker PM, Hannson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  5. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.

    Article  CAS  PubMed  Google Scholar 

  6. Buffon A, Biasucci LM, Liuzzo G, Dònoftio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.

    Article  PubMed  Google Scholar 

  7. Zaman T, Agarwal S, Anabtawi AG, et al. Angiographic lesion severity and subsequent myocardial infarction. Am J Cardiol. 2012;110:167–72.

    Article  PubMed  Google Scholar 

  8. Finn AV, Nakano M, Narula J, et al. Concept of vulnarable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282–92.

    Article  CAS  PubMed  Google Scholar 

  9. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;20:364:226-35.

    Google Scholar 

  10. Shih J, Datwyler SA, Hsu SC, et al. Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clin Chem. 2008;54:1076–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ivandic BT, Spanuth E, Haase D, Lestin HG, Katus HA. Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin Chem. 2007;53:1231–4.

    Article  CAS  PubMed  Google Scholar 

  12. Oliver LK, Voskoboev N, Heser D, et al. Assessment of clinical performance without adequate analytical validation: a prescription for confusion. Clin Biochem. 2011;44:1247–52.

    Article  PubMed  Google Scholar 

  13. Clinical and Laboratory Standards Institute. Protocols for determination of limits of detection and limits of quantitation, approved guideline. CLSI document EP17-A. Wayne: CLSI; 2004.

  14. Clinical and Laboratory Standards Institute. Evaluation of precision performance of quantitative measurement methods: approved guideline-second edition. CLSI document EP5-A2. Wayne: CLSI; 2005.

  15. Clinical and Laboratory Standards Institute. Evaluation of the linearity of quantitative measurement procedures: a statistical approach; approved guideline, EP06-A. Wayne: CLSI; 2003.

  16. Clinical and Laboratory Standards Institute. Interference testing in clinical chemistry; approved guideline, EP07-A2. 2nd ed. Wayne: CLSI; 2005.

    Google Scholar 

  17. Clinical and Laboratory Standards Institute. Method comparison and bias estimation using patient samples: approved guideline. CLSI document EP9-A2. Wayne: CLSI; 2002.

  18. Carroll RC, Craft RM, Snider CC, Aligeti VR, Wortham DC. A comparison of VerifyNow® with PlateletMapping®—detected aspirin resistance and correlation with urinary thromboxane. Anesth Analg. 2013;116:282–6.

    Article  CAS  PubMed  Google Scholar 

  19. Savukoski T, Twarda A, Hellberg S, et al. Epitope specificity and IgG subclass distribution of autoantibodies to cardiac troponin. Clin Chem. 2013;59:512–8.

    Article  CAS  PubMed  Google Scholar 

  20. Clinical and Laboratory Standards Institute. Defining, establishing, and verifying reference intervals in the clinical laboratory; proposed guideline. 3rd ed. CLSI document C28-P3. Wayne: CLSI; 2008.

  21. Fraser CG. Reference change values: the way forward in monitoring. Ann Clin Biochem. 2009;46:264–5.

    Article  PubMed  Google Scholar 

  22. Linnet K, Bossuyt PMM, Moons KGM, Reitsma JB. Quantifying the accuracy of a diagnostic test marker. Clin Chem. 2012;58:1292–301.

    Article  CAS  PubMed  Google Scholar 

  23. Moons KGM, de Groot JAH, Linnet K, Reitsma JB, Bossuyt PMM. Quantifying the added value of a diagnostic test marker. Clin Chem. 2012;58:1408–17.

    Article  PubMed  Google Scholar 

  24. Kampfrath T, Levinson SS. Brief clinical review: statistical assessment of biomarker performance. Clin Chim Acta. 2013;419:102–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ioannidis JPA, Tzoulaki I. Minimal and null predictive effects for most popular blood biomarkers of cardiovascular disease. Circ Res. 2012;110:658–62.

    Article  CAS  PubMed  Google Scholar 

  26. Pepys MB. C-reactive protein fifty years on. Lancet. 1981;1:653–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ross R. Atherosclerosis- an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts WL. CDC/AHA Workshop on markers of inflammation and cardiovascular disease – Application to clinical and public health practice Laboratory tests available to assess inflammation—performance and standardization. A background paper. Circulation. 2004;110:e572–6.

    Article  CAS  PubMed  Google Scholar 

  29. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet. 1997;349(9050):462–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ridker PM, Danielson E, Fonseca FA, JUPITER study group, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  31. Ridker PM, Cannon CP, Morrow D, et al. Pravastatin or Atorvastatin Evaluation and Infection Therapy—Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-Reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–8.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta NK, de Lermos JA, Ayers CR, Abdullah SM, McGuire DK, Khera A. The relationship between C-reactive protein and atherosclerosis differs on the basis of body mass index: the Dallas Heart Study. J Am Coll Cardiol. 2012;60:1148–55.

    Article  CAS  PubMed  Google Scholar 

  33. Khera A, McGuire DK, Murphy SA, et al. Race and gender differences in C-reactive protein levels. J Am Coll Cardiol. 2005;46:464–9.

    Article  CAS  PubMed  Google Scholar 

  34. Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation. 1999;99:855–60.

    Article  CAS  PubMed  Google Scholar 

  35. Mueller C, Buettner HJ, Hodgson JM, et al. Inflammation and long-term mortality after non-ST elevation acute coronary syndrome treated with a very early invasive strategy in 1042 consecutive patients. Circulation. 2002;105:1412–5.

    Article  PubMed  Google Scholar 

  36. Kinlay S, Schwartz GG, Olsson AG, et al. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation. 2003;108:1560–6.

    Article  CAS  PubMed  Google Scholar 

  37. Zamani P, Schwartz GG, Olsson AG, et al. Inflammatory biomarkers, death, and recurrent nonfatal coronary events after an acute coronary syndrome in the MIRACLE study. J Am Heart Assoc. 2013;2:e003103. doi:10.1161/JAHA.112.003103.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lindahl B, Toss H, Siegbagn A, Venge P, Wallentin L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC study group. Fragmin during instability in coronary artery. N Engl J Med. 2000;343:1139–47.

    Article  CAS  PubMed  Google Scholar 

  39. Bogaty P, Boyer L, Simard S, et al. Clinical utility of C-reactive protein measured at admission, hospital discharge, and 1 month later to predict outcome in patients with acute coronary artery disease. The RISCA (recurrence and inflammation in the acute coronary syndromes) study. J Am Coll Cardiol. 2008;51:2339–46.

    Article  CAS  PubMed  Google Scholar 

  40. Ridker PM, Kastelein JJP, Genest J, Koenig W. C-reactive protein and cholesterol are equally strong predictors of cardiovascular risk and both are important for quality clinical care. Eur Heart J. 2013;34:1258–61.

    Google Scholar 

  41. Greenland P, Alpert JS, Beller GA, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Tasc Force on Practice Guidelines. Circulation. 2010;122:e584–636.

    Google Scholar 

  42. Apple FS, Wu AHB, Mair J, et al. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem. 2005;51:810–24.

    Article  CAS  PubMed  Google Scholar 

  43. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–31.

    Article  CAS  PubMed  Google Scholar 

  44. Thompson A, Gao P, Orfei L, et al. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–44.

    Article  CAS  PubMed  Google Scholar 

  45. Melander O, Newton-Cheh C, Almgren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tselepis AF, Rizzo M, Goudevenos IA. Therapeutic modulation of lipoprotein-associated phospholipase A2 (Lp-PLA2). Curr Pharm Dis. 2011;17:3656–61.

    Article  CAS  Google Scholar 

  47. Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118:1172–82.

    Article  CAS  PubMed  Google Scholar 

  48. Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary sindrome. Circulation. 2002;106:2894–900.

    Article  PubMed  Google Scholar 

  49. Brennan ML, Penn MS, van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–604.

    Article  CAS  PubMed  Google Scholar 

  50. Scirica BM, Sabatine MS, Jarolim P, et al. Assessment of multiple cardiac biomarkers in non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 Trial. Eur Heart J. 2011;32:697–705.

    Article  CAS  PubMed  Google Scholar 

  51. Thygesen K, Mair J, Mueller C, Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J. 2012;16:2001–6.

    Article  Google Scholar 

  52. Di Angelantonio E, Chowdhury R, Sarwar N, et al. B-type natriuretic peptide and cardiovascular risk: systematic review and metaanalysis of 40 prospective studies. Circulation. 2009;120:2177–87.

    Article  PubMed  Google Scholar 

  53. de Lemos JA, Morrow DA, Bentley JH, et al. The prognostic value of BNP in patients with acute coronary syndromes. N Engl J Med. 2001;345:1014–21.

    Article  PubMed  Google Scholar 

  54. Goetze P, Jorgensen HL, Sennels HP, Fahrenkrug J. Diurnal plasma concentrations of natriuretic peptides in healthy young males. Clin Chem. 2012;58:789–92.

    Article  CAS  PubMed  Google Scholar 

  55. Windhausen F, Hirsch A, Sanders GT, et al. Invasive versus Conservative Treatment in Unstable coronary Syndromes investigators. N-terminal pro-brain natriuretic peptide for additional risk stratification in patients with non-ST-elevation acute coronary syndrome and elevated troponin T: an invasive versus conservative treatment in unstable coronary syndromes (ICTUS) substudy. Am Heart J. 2007;153:485–92.

    Article  CAS  PubMed  Google Scholar 

  56. Khan SQ, Narayan H, Ng KH, et al. N-terminal pro-B-type natriuretic peptide complements the GRACE risk score in predicting early and late mortality following acute coronary syndrome. Clin Sci (Lond). 2009;117:31–9.

    Article  CAS  Google Scholar 

  57. Morrow DA, de Lemos JA, Sabatine MS, et al. Evaluation of BNP for risk assessment in unstable angina / non-ST-elevation myocardial infarction BNP and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol. 2003;41:1264–72.

    Article  CAS  PubMed  Google Scholar 

  58. Jernberg T, Lindahl B, Siegbahn A, et al. NT-proBNP in relation to inflammation, myocardial necrosis, and the effect of an invasive strategy in unstable coronary artery disease. J Am Coll Cardiol. 2003;42:1909–16.

    Article  CAS  PubMed  Google Scholar 

  59. Thygesen K, Mair J, Katus H, Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31:2197–204.

    Article  CAS  PubMed  Google Scholar 

  60. Thygesen K, Mair J, Giannitsis E, Study Group on Biomarkers in Cardiology of ESC Working Group on Acute Cardiac Care, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–7.

    Article  CAS  PubMed  Google Scholar 

  61. Sabatine MS, Morrow DA, de Lemos JA, Jarolim P, Braunwald E. Detection of myocardial ischemia using an ultrasensitive assay: results from TIMI 35. Eur Heart J. 2009;30:162–9.

    Article  CAS  PubMed  Google Scholar 

  62. Bais R. The effects of sample hemolysis on cardiac troponin I and T assays. Clin Chem. 2010;56:1357–9.

    Article  CAS  PubMed  Google Scholar 

  63. Omland T, de Lemos JA, Sabatine MS, Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial Investigators, et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361:2538–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ndrepepa G, Braun S, Mehilli J, et al. Prognostic value of sensitive troponin T in patients with stable and unstable angina and undetectable conventional troponin. Am Heart J. 2011;161:68–75.

    Article  CAS  PubMed  Google Scholar 

  65. Saunders JT, Mambi V, de Lemos JA, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary artery disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation. 2011;123:1367–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Beatty AL, KuIA, Christenson RH, Defilippi CR, Schiller NB, Whooley MA. High-sensitivity cardiac troponin T levels and secondary events in outpatients with coronary artery disease from the Heart and Soul study. JAMA Intern Med. 2013;173:763–9.

  67. deFilippi CR, de Lemos JA, Christenson RH, et al. Association of serial measures of cardiac troponin T using sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304:2494–502.

    Google Scholar 

  68. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality in the general population. JAMA. 2010;304:2503–12.

    Article  PubMed  Google Scholar 

  69. Wald DS, Morris JK, Wald NJ. Reconciling the evidence on serum homocysteine and ischemic heart disease: a metaanalysis. PLoS One. 2011;6:e16473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bayer-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N Engl J Med. 2001;345:1022–9.

    Article  Google Scholar 

  71. Schulz O, Reinicke M, Krämer J, et al. Pregnancy-associated plasma protein A values in patients with stable cardiovascular disease: use of a new monoclonal antibody-based assay. Clin Chim Acta. 2011;412:880–6.

    Article  CAS  PubMed  Google Scholar 

  72. Wittfooth S, Tertti R. Lepantalo, et al. Studies on the effects of heparin products on pregnancy-associated plasma protein A. Clin Chim Acta. 2011;412:376–81.

    Article  CAS  PubMed  Google Scholar 

  73. Bonaca MP, Scirica BM, Sabatine MS, et al. Prospective evaluation of pregnancy-associated plasma protein A and outcomes in patients with acute coronary syndromes. J Am Coll Cardiol. 2012;60:322–8.

    Article  Google Scholar 

  74. Postnikov AB, Smolyanova TI, Kharitonov AV, et al. N-terminal and C-terminal fragments of IGFBP-4 as novel biomarkers for short-term risk assessment of major adverse events inpatients presenting with ischemia. Clin Biochem. 2012;45:519–24.

    Article  CAS  PubMed  Google Scholar 

  75. Nitzani EE, Rizos EC, Ioannidis JP. Genetic effects versus bias for candidate poly morphisms in myocardial infarction: case study and overview of large-scale evidence. Am J Epidemiol. 2007;165:973–84.

    Article  Google Scholar 

  76. Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA. 2007;297:1551–61.

    Article  CAS  PubMed  Google Scholar 

  77. Shah S, Casas JP, Gaunt TR, et al. Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies. Eur Heart J. 2013;34:972–81.

    Article  CAS  PubMed  Google Scholar 

  78. Faergeman O. Genes and cardiovascular risk (editorial). Eur Heart J. 2013;34:949–50.

    Article  PubMed  Google Scholar 

  79. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular cauyses. N Engl J Med. 2008;358:2107–16.

    Article  CAS  PubMed  Google Scholar 

  80. Tzoulaki I, Siontis KC, Evangelou E, Ioannidis JPA. Bias in associations of emerging biomarkers with cardiovascular disease. JAMA Intern Med. 2013;173:664–71.

    Article  CAS  PubMed  Google Scholar 

  81. Nielsen M, Andersson C, Gerds TA, et al. Familial clustering of myocardial infarction in first-degree relatives: a nationwide study. Eur Heart J. 2013;34:1198–203.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

In the past year, Dr. Mair received minor consulting fees from Philips Health Care Incubator. Dr. Jaffe is or has been a consultant to most of the diagnostic companies during recent years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Mair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mair, J., Jaffe, A.S. Biomarker Tests for Risk Assessment in Coronary Artery Disease: Will They Change Clinical Practice?. Mol Diagn Ther 18, 5–15 (2014). https://doi.org/10.1007/s40291-013-0057-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0057-0

Keywords

Navigation