Skip to main content
Log in

Addressing Recent Failures in Immuno-Oncology Trials to Guide Novel Immunotherapeutic Treatment Strategies

  • Leading Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

The incorporation of checkpoint inhibitors into the treatment armamentarium of oncologic therapeutics has revolutionized the course of disease in many cancers. This has spurred the evaluation of other novel immunotherapy agents in clinical trials with varying levels of success. This review explores possible explanations for differences in efficacy in clinical outcomes among currently US FDA-approved immunotherapy agents, lessons learned from clinical trial failures of investigational immunotherapies, and methods to improve success in the future. An inherent challenge of early phase immunotherapy trials is identifying the maximum tolerated dose and improving understanding of the pharmacokinetics/pharmacodynamics of immunotherapies as they exert their effects indirectly via T cells rather than directly via dose-dependent cytotoxic activity. The wide heterogeneity of the immune system among patients and within an individual patient over time largely affects the results of optimal dose- and toxicity-finding studies as well as the effectiveness of immunotherapy. Therefore, optimization of phase I/II study design is crucial for clinical trial success. These differences may also help elucidate the lack of immunotherapy benefit in certain disease subtypes despite the presence of specific biomarkers. Broader investigation of the tumor microenvironment and its dynamic nature can help in the identification of alternative pathways for targeted therapies, mechanisms of immunotherapy resistance, and more correlative biomarkers. Finally, manipulation of the tumor microenvironment via a single agonist or antagonist may be inadequate, so combination therapies and sequencing of agents must be further assessed while balancing cumulative toxicity risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–67.

    Article  CAS  PubMed  Google Scholar 

  3. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hazarika M, et al. U.S. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin Cancer Res. 2017;23(14):3484–8.

    Article  CAS  PubMed  Google Scholar 

  5. Barone A, et al. FDA approval summary: pembrolizumab for the treatment of patients with unresectable or metastatic melanoma. Clin Cancer Res. 2017;23(19):5661–5.

    Article  CAS  PubMed  Google Scholar 

  6. Reck M, et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J Clin Oncol. 2019;37(7):537–46.

    Article  CAS  PubMed  Google Scholar 

  7. Ascierto PA, et al. Survival Outcomes in Patients With Previously Untreated BRAF Wild-Type Advanced Melanoma Treated With Nivolumab Therapy: Three-Year Follow-up of a Randomized Phase 3 Trial. JAMA oncology. 2019;5(2):187–94.

    Article  PubMed  Google Scholar 

  8. Ehrhardt S, Appel LJ, Meinert CL. Trends in national institutes of health funding for clinical trials registered in ClinicalTrials.gov. JAMA. 2015;314(23):2566–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wages NA, Chiuzan C, Panageas KS. Design considerations for early-phase clinical trials of immune-oncology agents. J ImmunoTher Cancer. 2018;6(1):81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seruga B, et al. Failures in phase III: causes and consequences. Clin Cancer Res. 2015;21(20):4552–60.

    Article  CAS  PubMed  Google Scholar 

  11. Topalian SL, et al. Nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients with advanced solid tumors: survival and long-term safety in a phase I trial. J Clin Oncol. 2013;31(15_suppl):3002.

    Article  Google Scholar 

  12. Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paz-Ares L, et al. Phase III, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC). J Clin Oncol. 2015;33(18_suppl):LBA109.

    Article  Google Scholar 

  14. Hodi FS, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–92.

    Article  CAS  PubMed  Google Scholar 

  15. Overman MJ, Ernstoff MS, Morse MA. Where we stand with immunotherapy in colorectal cancer: deficient mismatch repair, proficient mismatch repair, and toxicity management. Am Soc Clin Oncol Educ Book. 2018;38:239–47.

    Article  PubMed  Google Scholar 

  16. Abida W, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019;5(4):471–8.

    Article  PubMed  Google Scholar 

  17. Selby MJ, et al. Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS One. 2016;11(9):e0161779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hurwitz AA, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000;60(9):2444–8.

    CAS  PubMed  Google Scholar 

  19. Spencer KR, et al. Biomarkers for immunotherapy: current developments and challenges. Am Soc Clin Oncol Educ Book. 2016;36:e493–503.

    Article  Google Scholar 

  20. McLaughlin J, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer heterogeneity of PD-L1 expression in non–small-cell lung cancer. JAMA Oncol. 2016;2(1):46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carbone DP, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reck M, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37(7):537–46.

    Article  CAS  PubMed  Google Scholar 

  23. Ready N, et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol. 2019;37(12):992–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bristol Myers Squibb, Bristol–Myers Squibb provides update on the ongoing regulatory review of opdivo plus low-dose yervoy in first-line lung cancer patients with tumor mutational burden ≥ 10 mut/Mb. https://www.news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-provides-update-ongoing-regulatory-review. Accessed 3 Mar 2020.

  25. Langer C, et al. OA04.05 KEYNOTE- 021: TMB and Outcomes for Carboplatin and Pemetrexed With or Without Pembrolizumab for Nonsquamous NSCLC. J Thorac Oncol. 2019;14(10):S216.

    Article  Google Scholar 

  26. Garassino M, et al. OA04.06 Evaluation of TMB in KEYNOTE- 189: Pembrolizumab Plus Chemotherapy vs Placebo Plus Chemotherapy for Nonsquamous NSCLC. J Thorac Oncol. 2019;14(10):S216–7.

    Article  Google Scholar 

  27. Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azad NS, et al. Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study. J clin oncol: official J Am Soc Clin Oncol. 2020;38(3):214–22.

    Article  Google Scholar 

  29. Fessas P, et al. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol. 2017;44(2):136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kverneland AH, et al. Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology. 2018;7(5):e1424674.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vugt M, et al. Immunogenicity of pembrolizumab (pembro) in patients (pts) with advanced melanoma (MEL) and non-small cell lung cancer (NSCLC): pooled results from KEYNOTE-001, 002, 006, and 010. J Clin Oncol. 2016;34.

  32. Agrawal S, et al. Evaluation of immunogenicity of nivolumab monotherapy and its clinical relevance in patients with metastatic solid tumors. J Clin Pharmacol. 2017;57(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma P, et al. Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650). J Clin Oncol. 2019;37(7_suppl):142.

    Article  Google Scholar 

  34. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gandhi L, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  PubMed  Google Scholar 

  36. Messenheimer DJ, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res. 2017;23(20):6165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holmgaard RB, et al. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncoimmunology. 2016;5(7):e1151595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lebbe C, et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J Clin Oncol. 2019;37(11):867–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horstmann E, et al. Risks and benefits of phase 1 oncology trials, 1991 through 2002. N Engl J Med. 2005;352(9):895–904.

    Article  CAS  PubMed  Google Scholar 

  40. Merck. Merck provides update on phase 3 KEYNOTE-119 Study of KEYTRUDA® (pembrolizumab) monotherapy in previously-treated patients with metastatic triple-negative breast cancer. 2019. http://www.investors.merck.com/news/press-release-details/2019/Merck-Provides-Update-on-Phase-3-KEYNOTE-119-Study-of-KEYTRUDA-pembrolizumab-Monotherapy-in-Previously-Treated-Patients-with-Metastatic-Triple-Negative-Breast-Cancer/default.aspx. Accessed 3 Mar 2020.

  41. Finn RS, et al. Results of KEYNOTE- 240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2019;37(15_suppl):4004.

    Article  Google Scholar 

  42. Chuk MK, et al. FDA approval summary: accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma. Clin Cancer Res. 2017;23(19):5666–70.

    Article  CAS  PubMed  Google Scholar 

  43. Nghiem P, et al. durable tumor regression and overall survival in patients with advanced merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol. 2019;37(9):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Antonia SJ, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.

    Article  CAS  PubMed  Google Scholar 

  45. Suzman DL, et al. FDA approval summary: atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist. 2019;24(4):563–9.

    Article  CAS  PubMed  Google Scholar 

  46. Emens LA, et al. Cancer immunotherapy trials: leading a paradigm shift in drug development. J Immunother Cancer. 2016;4:42.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bates SE, et al. Advancing clinical trials to streamline drug development. Clin Cancer Res. 2015;21(20):4527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffman-Censits J, et al. IMvigor 210, a phase II trial of atezolizumab (MPDL3280A) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC). J Clin Oncol. 2016;34:355.

    Article  Google Scholar 

  49. Powles T, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.

    Article  CAS  PubMed  Google Scholar 

  50. Reck M, et al. LBA5 Efficacy and safety of nivolumab (nivo) monotherapy versus chemotherapy (chemo) in recurrent small cell lung cancer (SCLC): Results from CheckMate 331. Ann Oncol. 2018;29.

  51. Owonikoko TK, et al. LBA1_PR - Nivolumab (nivo) plus ipilimumab (ipi), nivo, or placebo (pbo) as maintenance therapy in patients (pts) with extensive disease small cell lung cancer (ED-SCLC) after first-line (1L) platinum-based chemotherapy (chemo): Results from the double-blind, randomized phase III CheckMate 451 study. Ann Oncol. 2019;30:ii77–80.

    Article  Google Scholar 

  52. Wolchok JD, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  53. Frelaut M, Le Tourneau C, Borcoman E. Hyperprogression under immunotherapy. Int J Mol Sci. 2019;20(11):2674.

    Article  CAS  PubMed Central  Google Scholar 

  54. Seymour L, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Datta M, et al. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am Soc Clin Oncol Educ Book. 2019;39:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14(3):154–65.

    Article  CAS  PubMed  Google Scholar 

  57. Ribas A, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He M, et al. Remarkably similar CTLA-4 binding properties of therapeutic ipilimumab and tremelimumab antibodies. Oncotarget. 2017;8(40):67129–39.

    PubMed  PubMed Central  Google Scholar 

  59. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 2014;4:74.

    PubMed  PubMed Central  Google Scholar 

  60. Andtbacka RHI, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  PubMed  Google Scholar 

  61. Chesney J, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018;36(17):1658–67.

    Article  CAS  PubMed  Google Scholar 

  62. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26(5):605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci. 2018;1417(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  64. Ott PA, Hodi FS, Buchbinder EI. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front Oncol. 2015;5:202.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yamazaki K, et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol. 2016;27(8):1539–46.

    Article  CAS  PubMed  Google Scholar 

  66. Socinski MA, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.

    Article  CAS  PubMed  Google Scholar 

  67. Motzer RJ, et al. IMmotion151: A Randomized Phase III Study of Atezolizumab Plus Bevacizumab vs Sunitinib in Untreated Metastatic Renal Cell Carcinoma (mRCC). J Clin Oncol. 2018;36(6_suppl):578.

    Article  Google Scholar 

  68. Stein S, et al. Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase Ib study in hepatocellular carcinoma (HCC). J Clin Oncol. 2018;36(15_suppl):4074.

    Article  Google Scholar 

  69. Reck M, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27(8):1227–34.

    Article  CAS  PubMed  Google Scholar 

  70. Fares CM, et al. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? 2019;(39):147–64.

  71. DeMatteo R. 2016. 'Targeting IDO: a novel immune checkpoint in GIST.' ASCO Annual Meeting: Chigaco, USA. https://meetinglibrary.asco.org/record/50814/video.

  72. Schalper KA. Significance of PD-L1, IDO-1, and B7-H4 expression in lung cancer. In: 2015 ASCO annual meeting. 2015.

  73. Gibney GT, et al. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J Immunother Cancer. 2019;7(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mitchell TC, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II Trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018:Jco2018789602.

  75. Perez RP, et al. Epacadostat plus nivolumab in patients with advanced solid tumors: Preliminary phase I/II results of ECHO-204. J Clin Oncol. 2017;35(15_suppl):3003.

    Article  Google Scholar 

  76. Long GV, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. The Lancet. Oncology. 2019;20(8):1083–97.

    Article  CAS  PubMed  Google Scholar 

  77. Yap TA, et al. ICONIC: Biologic and clinical activity of first in class ICOS agonist antibody JTX-2011 +/- nivolumab (nivo) in patients (pts) with advanced cancers. J Clin Oncol. 2018;36(15_suppl):3000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Olszanski.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

Shazia K. Nakhoda has no conflicts of interest that might be relevant to the contents of this manuscript. Anthony J. Olszanski sits on advisory boards, with commensurate honorarium, for Array, BMS, Merck, Novartis, and Pfizer. Additionally, the institution receives funding from trials for which he is participating, including from Adaptimmune, Astellas, BMS, Boston Biomedical, Checkmate Pharmaceutical, EMD Serono, GlycoNex, Immoncore, Incyte, Intensity Therapeutics, Kadmon, Kartos, Kura, Nektar, NGM Biopharmaceutical, Oncoceutics, OncoSec, Seattle Genetics, Sound Biologics, Spring Bank, Takeda, and Targovax.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhoda, S.K., Olszanski, A.J. Addressing Recent Failures in Immuno-Oncology Trials to Guide Novel Immunotherapeutic Treatment Strategies. Pharm Med 34, 83–91 (2020). https://doi.org/10.1007/s40290-020-00326-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-020-00326-z

Navigation