Skip to main content
Log in

Reliability of Field-Based Fitness Tests in Adults: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Correction to this article was published on 12 February 2022

This article has been updated

Abstract

Background

Physical fitness is a powerful predictor of morbidity and mortality, and is therefore a useful indicator for public health monitoring. To assess physical fitness, field-based tests are time-efficient, inexpensive, have minimal equipment requirements, and can be easily administered to a large number of individuals.

Objective

The objective of this systematic review was to examine the reliability of existing field-based fitness tests used in adults aged 19–64 years.

Methods

A systematic search of two electronic databases (MEDLINE and Web of Science) was conducted from inception to 8 June 2021 by two independent researchers. Each study was classified as high, low, or very low quality according to the description of the participants, the time interval between measurements, the description of the results, and the appropriateness of statistics. Three levels of evidence (strong, moderate, and limited) were established according to the number of studies and the consistency of their findings. The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO reference number, CRD42019118480).

Results

Of 17,010 records identified, 129 original studies examining the reliability of field-based fitness tests in adults were considered eligible. The reliability was assessed of tests of cardiorespiratory fitness (33 studies: 30 of high quality), musculoskeletal fitness (92 studies: 78 of high quality), and motor fitness (22 studies, all of high quality). There was strong evidence indicating: (i) the high reliability of the cardiorespiratory fitness tests: 20-m shuttle run, 6-min step, and 6-min walk; (ii) the high reliability of the musculoskeletal fitness tests: handgrip strength, back-leg strength, Sorensen, trunk flexion sustained, 5-reps sit-to-stand, sit-and-reach and toe-touch, and moderate reliability bilateral side bridge and prone bridge tests; and (iii) the moderate reliability and low reliability, respectively, of the motor fitness tests T-test and single-leg stand. We found moderate evidence indicating the moderate or high reliability of the following tests: Chester, sit-up, partial curl-up, flexion-rotation trunk, timed stair ascent, pull-up, bent-arm hang, standing broad jump, hop sequence, trunk lift, timed-up-and-go, and hexagon agility. Evidence for the reliability of balance and gait speed tests was inconclusive. Other field-based fitness tests demonstrated limited evidence, mainly due to there being only few studies.

Conclusions

This review provides an evidence-based proposal of the more reliable field-based fitness tests for adults aged 19–64 years. Our findings identified a need for more high-quality studies designed to assess the reliability of field-based tests of lower and upper body explosive and endurance muscular strength, and motor fitness (i.e., balance and gait speed tests) in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Carbone S, Kirkman DL, Garten RS, Rodriguez-Miguelez P, Artero EG, Lee D-C, et al. Muscular strength and cardiovascular disease: an updated state-of-the-art narrative review. J Cardiopulm Rehabil Prev. 2020;40(5):302–9.

    Article  PubMed  Google Scholar 

  2. Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease—the past, present, and future. Prog Cardiovasc Dis. 2019;62(2):86–93.

    Article  PubMed  Google Scholar 

  3. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124(5):799–815.

    Article  CAS  PubMed  Google Scholar 

  4. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz JR, Castro-Pinero J, Artero EG, Ortega FB, Sjostrom M, Suni J, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23.

    Article  CAS  PubMed  Google Scholar 

  6. García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? a systematic review and meta-analysis of longitudinal studies. Sports Med. 2019;49(7):1079–94.

    Article  PubMed  Google Scholar 

  7. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis. 2017;60(1):11–20.

    Article  PubMed  Google Scholar 

  8. García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee D-C, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100-2113.e5.

    Article  PubMed  Google Scholar 

  9. Barry VW, Caputo JL, Kang M. The joint association of fitness and fatness on cardiovascular disease mortality: a meta-analysis. Prog Cardiovasc Dis. 2018;61(2):136–41.

    Article  PubMed  Google Scholar 

  10. Canadia CSFEPT. Physical activity, fitness and lifestyle appraisal. Canada H, editor. Ottawa, ON; 1996.

  11. Suni JH, Oja P, Miilunpalo SI, Pasanen ME, Vuori IM, Bos K. Health-related fitness test battery for adults: associations with perceived health, mobility, and back function and symptoms. Arch Phys Med Rehabil. 1998;79(5):559–69.

    Article  CAS  PubMed  Google Scholar 

  12. Oja P, Tuxworth BE, editor. Eurofit for adults: assessment of health-related fitness [Internet]. Finland: Council of Europe Publishing; 1995. http://www.ukkinstituutti.fi/filebank/500-ALPHA_FIT_Testers_Manual.pdf. Accessed 22 Apr 2021.

  13. Suni J, Husu P, Rinne M. Fitness for health: the ALPHA-FIT test battery for adults aged 18–69 [Internet]. 2009. https://ukkinstituutti.fi/filebank/500-ALPHA_FIT_Testers_Manual.pdf. Accessed 25 Apr 2021.

  14. Ruiz JR, Castro-Piñero J, España-Romero V, Artero EG, Ortega FB, Cuenca MM, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518–24.

    Article  PubMed  Google Scholar 

  15. Suni JH, Miilunpalo SI, Asikainen TM, Laukkanen RT, Oja P, Pasanen ME, et al. Safety and feasibility of a health-related fitness test battery for adults. Phys Ther. 1998;78(2):134–48.

    Article  CAS  PubMed  Google Scholar 

  16. Drake D, Kennedy R, Wallace E. The validity and responsiveness of isometric lower body multi-joint tests of muscular strength: a systematic review. Sport Med Open. 2017;3(1):23.

    Article  Google Scholar 

  17. Ortega FB, Cadenas-Sánchez C, Sánchez-Delgado G, Mora-González J, Martínez-Téllez B, Artero EG, et al. Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports Med. 2015;45(4):533–55.

    Article  PubMed  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev. 2012;1:2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Artero EG, España-Romero V, Castro-Piñero J, Ortega FB, Suni J, Castillo-Garzon MJ, et al. Reliability of field-based fitness tests in youth. Int J Sports Med. 2011;32(3):159–69.

    Article  CAS  PubMed  Google Scholar 

  21. Castro-Pinero J, Artero E, Espana-Romero V, Ortega F, Sjostrom M, Suni J, et al. Criterion-related validity of fi eld-based fitness tests in youth: a systematic review. Br J Sport Med. 2010;2010(44):934–43.

    Article  Google Scholar 

  22. Hopkinsm WG. Measures of reliability in sports medicine and science. Sport Med. 2000;30(1):1–15.

    Article  Google Scholar 

  23. Olds T. Five errors about error. J Sci Med Sport. 2002;5:336–40.

    Article  PubMed  Google Scholar 

  24. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38.

    Article  CAS  PubMed  Google Scholar 

  25. Bruton A, Conway JH, Holgate ST. Reliability: what is it and how is it measured? Physiotherapy. 2000;86(2):94–9.

    Article  Google Scholar 

  26. Vincent-Smith B, Gibbons P. Inter-examiner and intra-examiner reliability of the standing flexion test. Man Ther. 1999;4(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  27. Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40.

    PubMed  Google Scholar 

  28. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276–82.

    Article  Google Scholar 

  29. ACSM. American College of Sports Medicine, ACSM’s guidelines for exercise testing and prescription. 9th ed. Philadelphia: Lippincott Williams & Williams; 2013.

    Google Scholar 

  30. Sproule J, Kunalan C, McNeill M, Wright H. Validity of 20-MST for predicting VO2max of adult Singaporean athletes. Br J Sports Med. 1993;27(3):202–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsigilis N, Douda H, Tokmakidis SP. Test–retest reliability of the Eurofit test battery administered to university students. Percept Mot Skills. 2002;95(3 Pt 2):1295–300.

    Article  PubMed  Google Scholar 

  32. Cooper S-M, Baker JS, Tong RJ, Roberts E, Hanford M. The repeatability and criterion related validity of the 20 m multistage fitness test as a predictor of maximal oxygen uptake in active young men. Br J Sports Med. 2005;39(4):e19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lamb KL, Rogers L. A re-appraisal of the reliability of the 20 m multi-stage shuttle run test. Eur J Appl Physiol. 2007;100(3):287–92.

    Article  PubMed  Google Scholar 

  34. Aandstad A, Holme I, Berntsen S, Anderssen SA. Validity and reliability of the 20 meter shuttle run test in military personnel. Mil Med. 2011;176(5):513–8.

    Article  PubMed  Google Scholar 

  35. Kim J, Jung SH, Cho HC. Validity and reliability of shuttle-run test in Korean adults. Int J Sports Med. 2011;32(8):580–5.

    Article  CAS  PubMed  Google Scholar 

  36. Metsios GS, Flouris AD, Koutedakis Y, Nevill A. Criterion-related validity and test–retest reliability of the 20m square shuttle test. J Sci Med Sport. 2008;11(2):214–7.

    Article  PubMed  Google Scholar 

  37. Penry JT, Wilcox AR, Yun J. Validity and reliability analysis of Cooper’s 12-minute run and the multistage shuttle run in healthy adults. J Strength Cond Res. 2011;25(3):597–605.

    Article  PubMed  Google Scholar 

  38. Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  39. Flouris AD, Metsios GS, Famisis K, Geladas N, Koutedakis Y. Prediction of VO2max from a new field test based on portable indirect calorimetry. J Sci Med Sport. 2010;13(1):70–3.

    Article  PubMed  Google Scholar 

  40. Mikawa K, Yano Y, Senjyu H. Development of a field test for evaluating aerobic fitness. Int J Sports Med. 2012;33(5):346–50.

    Article  CAS  PubMed  Google Scholar 

  41. Taylor S, Frost H, Taylor A, Barker K. Reliability and responsiveness of the shuttle walking test in patients with chronic low back pain. Physiother Res Int J Res Clin Phys Ther. 2001;6(3):170–8.

    Article  CAS  Google Scholar 

  42. Jurgensen SP, Trimer R, Dourado VZ, Di Thommazo-Luporini L, Bonjorno-Junior JC, Oliveira CR, et al. Shuttle walking test in obese women: test–retest reliability and concurrent validity with peak oxygen uptake. Clin Physiol Funct Imaging. 2015;35(2):120–6.

    Article  PubMed  Google Scholar 

  43. Curb JD, Ceria-Ulep CD, Rodriguez BL, Grove J, Guralnik J, Willcox BJ, et al. Performance-based measures of physical function for high-function populations. J Am Geriatr Soc. 2006;54(5):737–42.

    Article  PubMed  Google Scholar 

  44. Reuter SE, Massy-Westropp N, Evans AM. Reliability and validity of indices of hand-grip strength and endurance. Aust Occup Ther J. 2011;58(2):82–7.

    Article  PubMed  Google Scholar 

  45. Wilken JM, Darter BJ, Goffar SL, Ellwein JC, Snell RM, Tomalis EA, et al. Physical performance assessment in military service members. J Am Acad Orthop Surg. 2012;20(Suppl 1):S42–7.

    Article  PubMed  Google Scholar 

  46. Larsson UE, Reynisdottir S. The six-minute walk test in outpatients with obesity: reproducibility and known group validity. Physiother Res Int. 2008;13(2):84–93.

    Article  PubMed  Google Scholar 

  47. Simmonds MJ, Olson SL, Jones S, Hussein T, Lee CE, Novy D, et al. Psychometric characteristics and clinical usefulness of physical performance tests in patients with low back pain. Spine (Phila Pa 1976). 1998;23(22):2412–21.

    Article  CAS  Google Scholar 

  48. Laukkanen RMT, Kukkonen-Harjula TK, Oja P, Pasanen ME, Vuori IM. Prediction of change in maximal aerobic power by the 2-km walk test after walking training in middle-aged adults. Int J Sports Med. 2000;21(2):113–6.

    Article  CAS  PubMed  Google Scholar 

  49. Gabriel KKP, Rankin RL, Lee C, Charlton ME, Swan PD, Ainsworth BE, et al. Test–retest reliability and validity of the 400-meter walk test in healthy, middle-aged women. J Phys Act Health. 2010;7(5):649–57.

    Article  Google Scholar 

  50. Larsen GE, George JD, Alexander JL, Fellingham GW, Aldana SG, Parcell AC. Prediction of maximum oxygen consumption from walking, jogging, or running. Res Q Exerc Sport. 2002;73(1):66–72.

    Article  PubMed  Google Scholar 

  51. Léger L, Bouchet R. An indirect continuous running multistage field test: the Université de Montréal Track Test. Can J Appl Sport Sci. 1980;5(2):77–84.

    PubMed  Google Scholar 

  52. Beriault K, Carpentier AC, Gagnon C, Menard J, Baillargeon J-P, Ardilouze J-L, et al. Reproducibility of the 6-minute walk test in obese adults. Int J Sports Med. 2009;30(10):725–7.

    Article  CAS  PubMed  Google Scholar 

  53. Carvalho LP, Di Thommazo-Luporini L, Aubertin-Leheudre M, Bonjorno Junior JC, de Oliveira CR, Luporini RL, et al. Prediction of cardiorespiratory fitness by the six-minute step test and its association with muscle strength and power in sedentary obese and lean young women: a cross-sectional study. PLoS One. 2015;10(12):e0145960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Arcuri JF, Borghi-Silva A, Labadessa IG, Sentanin AC, Candolo C, Pires Di Lorenzo VA. Validity and reliability of the 6-minute step test in healthy individuals: a cross-sectional study. Clin J Sport Med. 2016;26(1):69–75.

    Article  PubMed  Google Scholar 

  55. Giacomantonio N, Morrison P, Rasmussen R, MacKay-Lyons MJ. Reliability and validity of the 6-minute step test for clinical assessment of cardiorespiratory fitness in people at risk of cardiovascular disease. J Strength Cond Res. 2018;34(5):1376–82.

    Article  Google Scholar 

  56. Buckley JP, Sim J, Eston RG, Hession R, Fox R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br J Sports Med. 2004;38(2):197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sykes K, Roberts A. The Chester step test—a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy. 2004;90:183–8.

    Article  Google Scholar 

  58. Ritchie C, Trost SG, Brown W, Armit C. Reliability and validity of physical fitness field tests for adults aged 55 to 70 years. J Sci Med Sport. 2005;8(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  59. Santa Maria DL, Kinnear GR, Kearney JT, Martin P. The objectivity, reliability, and validity of the osu step test for college males. Res Q Am Alliance Health Phys Educ Recreat. 1976;47(3):445–52.

    Article  CAS  Google Scholar 

  60. Gerodimos V. Reliability of handgrip strength test in basketball players. J Hum Kinet. 2012;31:25–36.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Savva C, Karagiannis C, Rushton A. Test–retest reliability of grip strength measurement in full elbow extension to evaluate maximum grip strength. J Hand Surg Eur. 2013;38(2):183–6.

    Article  CAS  Google Scholar 

  62. Bohannon RW. Test–retest reliability of the five-repetition sit-to-stand test: a systematic review of the literature involving adults. J Strength Cond Res. 2011;25(11):3205–7.

    Article  PubMed  Google Scholar 

  63. van Meeteren J, van Rijn RM, Selles RW, Roebroeck ME, Stam HJ. Grip strength parameters and functional activities in young adults with unilateral cerebral palsy compared with healthy subjects. J Rehabil Med. 2007;39(8):598–604.

    Article  PubMed  Google Scholar 

  64. Boissy P, Bourbonnais D, Carlotti MM, Gravel D, Arsenault BA. Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil. 1999;13(4):354–62.

    Article  CAS  PubMed  Google Scholar 

  65. Chkeir A, Jaber R, Hewson DJ, Duchene J. Reliability and validity of the grip-ball dynamometer for grip-strength measurement. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2012;2012:1996–9.

    Google Scholar 

  66. Lusardi MBR. Hand Grip strength: comparability of measurements obtained with a jamar dynamometer and a modified sphygmomanometerle. J Hand Ther. 1991;4(4):117–22.

    Article  Google Scholar 

  67. Hamilton GF, McDonald C, Chenier TC. Measurement of grip strength: validity and reliability of the sphygmomanometer and jamar grip dynamometer. J Orthop Sports Phys Ther. 1992;16(5):215–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cadenas-Sanchez C, Sanchez-Delgado G, Martinez-Tellez B, Mora-Gonzalez J, Lof M, Espana-Romero V, et al. Reliability and validity of different models of TKK hand dynamometers. Am J Occup Ther. 2016;70(4):7004300010.

    Article  PubMed  Google Scholar 

  69. Bohannon RW. Test–retest reliability of the MicroFET 4 hand-grip dynamometer. Physiother Theory Pract. 2006;22(4):219–21.

    Article  PubMed  Google Scholar 

  70. Reijnierse EM, de Jong N, Trappenburg MC, Blauw GJ, Butler-Browne G, Gapeyeva H, et al. Assessment of maximal handgrip strength: how many attempts are needed? J Cachexia Sarcopenia Muscle. 2017;8(3):466–74.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Peolsson A, Hedlund R, Oberg B. Intra- and inter-tester reliability and reference values for hand strength. J Rehabil Med. 2001;33(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  72. Plant CE, Parsons NR, Edwards AT, Rice H, Denninson K, Costa ML. A comparison of electronic and manual dynamometry and goniometry in patients with fracture of the distal radius and healthy participants. J Hand Ther. 2016;29(1):73–80.

    Article  PubMed  Google Scholar 

  73. Hamilton A, Balnave R, Adams R. Grip strength testing reliability. J Hand Ther. 1994;7(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  74. Shechtman O, MacKinnon L, Locklear C. Using the BTE Primus to measure grip and wrist flexion strength in physically active wheelchair users: an exploratory study. Am J Occup Ther. 2001;55(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  75. Shechtman O, Davenport R, Malcolm M, Nabavi D. Reliability and validity of the BTE-Primus grip tool. J Hand Ther. 2003;16(1):36–42.

    Article  PubMed  Google Scholar 

  76. Shechtman O, Gestewitz L, Kimble C. Reliability and validity of the DynEx dynamometer. J Hand Ther. 2005;18(3):339–47.

    Article  PubMed  Google Scholar 

  77. Coldham F, Lewis J, Lee H. The reliability of one vs. three grip trials in symptomatic and asymptomatic subjects. J Hand Ther. 2006;19(3):318–27.

    Article  PubMed  Google Scholar 

  78. Svantesson U, Norde M, Svensson S, Brodin E. A comparative study of the Jamar (R) and the Grippit (R) for measuring handgrip strength in clinical practice. Isokinet Exerc Sci. 2009;17(2):85–91.

    Article  Google Scholar 

  79. Mathiowetz V. Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occup Ther Int. 2002;9(3):201–9.

    Article  PubMed  Google Scholar 

  80. Shechtman O. The coefficient of variation as a measure of sincerity of effort of grip strength, part I: the statistical principle. J Hand Ther. 2001;14(3):180–7.

    Article  CAS  PubMed  Google Scholar 

  81. Espana-Romero V, Artero EG, Santaliestra-Pasias AM, Gutierrez A, Castillo MJ, Ruiz JR. Hand span influences optimal grip span in boys and girls aged 6 to 12 years. J Hand Surg Am. 2008;33:378–84.

    Article  PubMed  Google Scholar 

  82. Ruiz JR, Espana-Romero V, Ortega FB, Sjöström M, Castillo MJ, Gutierrez A. Hand span influences optimal grip span in male and female teenagers. J Hand Surg Am. 2006;31:1367–72.

    Article  PubMed  Google Scholar 

  83. Ruiz-Ruiz J, Mesa JL, Gutiérrez A, Castillo MJ. Hand size influences optimal grip span in women but not in men. J Hand Surgery, Am. 2002;27:897–901.

    Article  Google Scholar 

  84. Sanchez-Delgado G, Adenas-Sanchez C, Mora-Gonzalez J, Martinez-Tellez B, Chillón P, Löf M, et al. Assessment of handgrip strength in preschool children aged 3 to 5 years. J Hand Surg Eur. 2015;40:966–72.

    Article  CAS  Google Scholar 

  85. Ten Hoor GA, Musch K, Meijer K, Plasqui G. Test–retest reproducibility and validity of the back-leg-chest strength measurements. Isokinet Exerc Sci. 2016;24(3):209–16.

    Article  Google Scholar 

  86. Coldwells A, Atkinson G, Reilly T. Sources of variation in back and leg dynamometry. Ergonomics. 1994;37(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  87. Whitehead PN, Schilling BK, Peterson DD, Weiss LW. Possible new modalities for the Navy physical readiness test. Mil Med. 2012;177(11):1417–25.

    Article  PubMed  Google Scholar 

  88. Keller A, Hellesnes J, Brox JI. Reliability of the isokinetic trunk extensor test, Biering–Sorensen test, and Astrand bicycle test: assessment of intraclass correlation coefficient and critical difference in patients with chronic low back pain and healthy individuals. Spine (Phila Pa 1976). 2001;26(7):771–7.

    Article  CAS  Google Scholar 

  89. Ljungquist T, Harms-Ringdahl K, Nygren A, Jensen I. Intra- and inter-rater reliability of an 11-test package for assessing dysfunction due to back or neck pain. Physiother Res Int. 1999;4(3):214–32.

    Article  CAS  PubMed  Google Scholar 

  90. Ito T, Shirado O, Suzuki H, Takahashi M, Kaneda K, Strax TE. Lumbar trunk muscle endurance testing: an inexpensive alternative to a machine for evaluation. Arch Phys Med Rehabil. 1996;77(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  91. del Pozo-Cruz B, Mocholi MH, del Pozo-Cruz J, Parraca JA, Adsuar JC, Gusi N. Reliability and validity of lumbar and abdominal trunk muscle endurance tests in office workers with nonspecific subacute low back pain. J Back Musculoskelet Rehabil. 2014;27(4):399–408.

    Article  PubMed  Google Scholar 

  92. Reiman MP, Krier AD, Nelson JA, Rogers MA, Stuke ZO, Smith BS. Reliability of alternative trunk endurance testing procedures using clinician stabilization vs. traditional methods. J Strength Cond Res. 2010;24(3):730–6.

    Article  PubMed  Google Scholar 

  93. Kahraman BO, Sengul YS, Kahraman T, Kalemci O, Ozcan Kahraman B, Salik Sengul Y, et al. Developing a reliable core stability assessment battery for patients with nonspecific low back pain. Spine (Phila Pa 1976). 2016;41(14):E844–50.

    Article  Google Scholar 

  94. Hyytiäinen K, Salminen J, Suvitie T, Wickström G, Pentti J. Reproducibility of nine tests to measure spinal mobility and trunk muscle strength. Scan J Rehab Med. 1991;23:3–10.

    Google Scholar 

  95. Larsson H, Tegern M, Monnier A, Skoglund J, Helander C, Persson E, et al. Content validity index and intra- and inter-rater reliability of a new muscle strength/endurance test battery for Swedish soldiers. PLoS ONE. 2015;10(7):e0132185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Latimer J, Maher CG, Refshauge K, Colaco I. The reliability and validity of the Biering–Sorensen test in asymptomatic subjects and subjects reporting current or previous nonspecific low back pain. Spine (Phila Pa 1976). 1999;24(20):2085–9.

    Article  CAS  Google Scholar 

  97. Gruther W, Wick F, Paul B, Leitner C, Posch M, Matzner M, et al. Diagnostic accuracy and reliability of muscle strength and endurance measurements in patients with chronic low back pain. J Rehabil Med. 2009;41(8):613–9.

    Article  PubMed  Google Scholar 

  98. Evans K, Refshauge KM, Adams R. Trunk muscle endurance tests: reliability, and gender differences in athletes. J Sci Med Sport. 2007;10(6):447–55.

    Article  PubMed  Google Scholar 

  99. Greene PF, Durall CJ, Kernozek TW. Intersession reliability and concurrent validity of isometric endurance tests for the lateral trunk muscles. J Sport Rehabil. 2012;21(2):161–6.

    Article  PubMed  Google Scholar 

  100. Durall CJ, Greene PF, Kernozek TW. A comparison of two isometric tests of trunk flexor endurance. J Strength Cond Res. 2012;26(7):1939–44.

    Article  PubMed  Google Scholar 

  101. De Blaiser C, De Ridder R, Willems T, Danneels L, Vanden Bossche L, Palmans T, et al. Evaluating abdominal core muscle fatigue: assessment of the validity and reliability of the prone bridging test. Scand J Med Sci Sports. 2018;28(2):391–9.

    Article  PubMed  Google Scholar 

  102. Diener M, Golding L, Diener D. Validity and reliability of a one-minute half sit-up test of abdominal strength and endurance. Sport Med Train Rehabil Int J. 1995;6:105–19.

    Article  Google Scholar 

  103. Moreland J, Finch E, Stratford P, Balsor B, Gill C. Interrater reliability of six tests of trunk muscle function and endurance. J Orthop Sports Phys Ther. 1997;26(4):200–8.

    Article  CAS  PubMed  Google Scholar 

  104. Robertson LD, Magnusdottir N. Evaluation of criteria associated with abdominal fitness testing. Res Q Exerc Sport. 1987;58(3):355–9.

    Article  Google Scholar 

  105. Suni JH, Oja P, Laukkanen RT, Miilunpalo SI, Pasanen ME, Vuori IM, et al. Health-related fitness test battery for adults: aspects of reliability. Arch Phys Med Rehabil. 1996;77(4):399–405.

    Article  CAS  PubMed  Google Scholar 

  106. Vincent WJ, Britten SD. Evaluation of the curl up asubstitute for the bent knee sit up. J Phys Educ Recreat. 1980;51(2):74–5.

    Article  Google Scholar 

  107. Brotons-Gil E, Garcia-Vaquero MP, Peco-Gonzalez N, Vera-Garcia FJ. Flexion-rotation trunk test to assess abdominal muscle endurance: reliability, learning effect, and sex differences. J Strength Cond Res. 2013;27(6):1602–8.

    Article  PubMed  Google Scholar 

  108. Juan-Recio C, Lopez-Plaza D, Barbado Murillo D, Pilar Garcia-Vaquero M, Vera-Garcia FJ. Reliability assessment and correlation analysis of 3 protocols to measure trunk muscle strength and endurance. J Sports Sci. 2018;36(4):357–64.

    PubMed  Google Scholar 

  109. Wolinsky FD, Miller DK, Andresen EM, Malmstrom TK, Miller JP. Reproducibility of physical performance and physiologic assessments. J Aging Health. 2005;17(2):111–24.

    Article  PubMed  Google Scholar 

  110. Bohannon RW, Bubela DJ, Magasi SR, Gershon RC. Relative reliability of three objective tests of limb muscle strength. Isokinet Exerc Sci. 2011;19(2):77–81.

    Article  Google Scholar 

  111. Kahraman T, Ozcan Kahraman B, Salik Sengul Y, Kalemci O. Assessment of sit-to-stand movement in nonspecific low back pain: a comparison study for psychometric properties of field-based and laboratory-based methods. Int J Rehabil Res Int Zeitschrift fur Rehabil Rev Int Rech Readapt. 2016;39(2):165–70.

    Google Scholar 

  112. LeBrasseur NK, Bhasin S, Miciek R, Storer TW. Tests of muscle strength and physical function: reliability and discrimination of performance in younger and older men and older men with mobility limitations. J Am Geriatr Soc. 2008;56(11):2118–23.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fielitz L, Coelho J, Horne T, Brechue W. Inter-rater reliability and intra-rater reliability of assessing the 2-minute push-up test. Mil Med. 2016;181(2):167–72.

    Article  PubMed  Google Scholar 

  114. Negrete RJ, Hanney WJ, Kolber MJ, Davies GJ, Ansley MK, McBride AB, et al. Reliability, minimal detectable change, and normative values for tests of upper extremity function and power. J Strength Cond Res. 2010;24(12):3318–25.

    Article  PubMed  Google Scholar 

  115. Clemons JM. Construct validity of a modification of the flexed arm hang test. J Strength Cond Res. 2014;28(12):3523–30.

    Article  PubMed  Google Scholar 

  116. Haitz K, Shultz R, Hodgins M, Matheson GO. Test–retest and interrater reliability of the functional lower extremity evaluation. J Orthop Sports Phys Ther. 2014;44(12):947–54.

    Article  PubMed  Google Scholar 

  117. Munro AG, Herrington LC. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25(5):1470–7.

    Article  PubMed  Google Scholar 

  118. Moir G, Shastri P, Connaboy C. Intersession reliability of vertical jump height in women and men. J Strength Cond Res. 2008;22(6):1779–84.

    Article  PubMed  Google Scholar 

  119. Ortiz A, Olson SL, Roddey TS, Morales J. Reliability of selected physical performance tests in young adult women. J Strength Cond Res. 2005;19(1):39–44.

    PubMed  Google Scholar 

  120. Clemons JM, Campbell B, Jeansonne C. Validity and reliability of a new test of upper body power. J Strength Cond Res. 2010;24(6):1559–65.

    Article  PubMed  Google Scholar 

  121. Cowley PM, Swensen TC. Development and reliability of two core stability field tests. J Strength Cond Res. 2008;22(2):619–24.

    Article  PubMed  Google Scholar 

  122. Bozic PR, Pazin NR, Berjan BB, Planic NM, Cuk ID. Evaluation of the field tests of flexibility of the lower extremity: reliability and the concurrent and factorial validity. J Strength Cond Res. 2010;24(9):2523–31.

    Article  PubMed  Google Scholar 

  123. Minkler S, Patterson P. The validity of the modified sit-and-reach test in college-age students. Res Q Exerc Sport. 1994;65(2):189–92.

    Article  CAS  PubMed  Google Scholar 

  124. Wear. Relationship of flexibility measurements to length of body segments title. Res Q. 1963;Vol. 34, N.

  125. Liemohn WP, Sharpe GL, Wasserman JF. Lumbosacral movement in the sit-and-reach and in Cailliet’s protective-hamstring stretch. Spine (Phila Pa 1976). 1994;19(18):2127–30.

    Article  CAS  Google Scholar 

  126. Hui SC, Yuen PY, Morrow JRJ, Jackson AW. Comparison of the criterion-related validity of sit-and-reach tests with and without limb length adjustment in Asian adults. Res Q Exerc Sport. 1999;70(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  127. Shephard RJ, Berridge M, Montelpare W. On the generality of the “sit and reach” test: an analysis of flexibility data for an aging population. Res Q Exerc Sport. 1990;61(4):326–30.

    Article  CAS  PubMed  Google Scholar 

  128. Ayala F, de Baranda RS, De Ste CM, Santonja F. Reproducibility and criterion-related validity of the sit and reach test and toe touch test for estimating hamstring flexibility in recreationally active young adults. Phys Ther Sport. 2012;13(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  129. Hui SS, Yuen PY. Validity of the modified back-saver sit-and-reach test: a comparison with other protocols. Med Sci Sports Exerc. 2000;32(9):1655–9.

    Article  CAS  PubMed  Google Scholar 

  130. Lopez Minarro PA, de Baranda Andujar PS, Rodriguez Garcia PL, Ortega TE. A comparison of the spine posture among several sit-and-reach test protocols. J Sci Med Sport. 2007;10(6):456–62.

    Article  Google Scholar 

  131. Leard JS, Crane BA, Ball KA. Intrarater and interrater reliability of 22 clinical measures associated with lower quarter malalignment. J Manip Physiol Ther. 2009;32(4):270–6.

    Article  Google Scholar 

  132. Atamaz F, Ozcaldiran B, Ozdedeli S, Capaci K, Durmaz B. Interobserver and intraobserver reliability in lower-limb flexibility measurements. J Sports Med Phys Fitn. 2011;51(4):689–94.

    CAS  Google Scholar 

  133. Perret C, Poiraudeau S, Fermanian J, Colau MML, Benhamou MAM, Revel M. Validity, reliability, and responsiveness of the fingertip-to-floor test. Arch Phys Med Rehabil. 2001;82(11):1566–70.

    Article  CAS  PubMed  Google Scholar 

  134. Kippers V, Parker AW. Toe-touch test: a measure of its validity. Phys Ther. 1987;67(11):1680–4.

    Article  CAS  PubMed  Google Scholar 

  135. Gauvin MG, Riddle DL, Rothstein JM. Reliability of clinical measurements of forward bending using the modified fingertip-to-floor method. Phys Ther. 1990;70(7):443–7.

    Article  CAS  PubMed  Google Scholar 

  136. Dijkstra PU, de Bont LG, van der Weele LT, Boering G. Joint mobility measurements: reliability of a standardized method. Cranio. 1994;12(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  137. Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Reproducibility and concurrent validity of hip joint angle test for estimating hamstring flexibility in recreationally active young men. J Strength Cond Res. 2012;26(9):2372–82.

    Article  PubMed  Google Scholar 

  138. Jackson AW, Morrow JRJ, Jensen RL, Jones NA, Schultes SS. Reliability of the prudential FITNESSGRAM trunk lift test in young adults. Res Q Exerc Sport. 1996;67(1):115–7.

    Article  CAS  PubMed  Google Scholar 

  139. van den Dolder PA, Ferreira PH, Refshauge K. Intra- and inter-rater reliability of a modified measure of hand behind back range of motion. Man Ther. 2014;19(1):72–6.

    Article  PubMed  Google Scholar 

  140. Kent M. The Oxford dictionary of sports science and medicine. 3rd ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  141. Rinne MB, Pasanen ME, Miilunpalo SI, Oja P. Test–retest reproducibility and inter-rater reliability of a motor skill test battery for adults. Int J Sports Med. 2001;22(3):192–200.

    Article  CAS  PubMed  Google Scholar 

  142. Kinzey SJ, Armstrong CW. The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther. 1998;27(5):356–60.

    Article  CAS  PubMed  Google Scholar 

  143. Gribble PA, Kelly SE, Refshauge KM, Hiller CE. Interrater reliability of the star excursion balance test. J Athl Train. 2013;48(5):621–6.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Punakallio A. Trial-to-trial reproducibility and test–retest stability of two dynamic balance tests among male firefighters. Int J Sports Med. 2004;25(3):163–9.

    Article  CAS  PubMed  Google Scholar 

  145. López-Plaza D, Juan-Recio C, Barbado D, Ruiz-Pérez I, Vera-Garcia FJ. Reliability of the star excursion balance test and two new similar protocols to measure trunk postural control. PM R. 2018;10(12):1344–52.

    Article  PubMed  Google Scholar 

  146. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  147. Spagnuolo DL, Jurgensen SP, Iwama AM, Dourado VZ. Walking for the assessment of balance in healthy subjects older than 40 years. Gerontology. 2010;56(5):467–73.

    Article  PubMed  Google Scholar 

  148. Raya MA, Gailey RS, Gaunaurd IA, Jayne DM, Campbell SM, Gagne E, et al. Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. J Rehabil Res Dev. 2013;50(7):951–60.

    Article  PubMed  Google Scholar 

  149. Sassi RH, Dardouri W, Yahmed MH, Gmada N, Mahfoudhi ME, Gharbi Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J Strength Cond Res. 2009;23(6):1644–51.

    Article  PubMed  Google Scholar 

  150. Beekhuizen KS, Davis MD, Kolber MJ, Cheng M-SS. Test–retest reliability and minimal detectable change of the hexagon agility test. J Strength Cond Res. 2009;23(7):2167–71.

    Article  PubMed  Google Scholar 

  151. Manderoos SA, Vaara ME, Maki PJ, Malkia EA, Aunola SK, Karppi S-L. A new agility test for adults: its test–retest reliability and minimal detectable change in untrained women and men aged 28–55. J Strength Cond Res. 2016;30(8):2226–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Language and editorial assistance was provided by Ana Burton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Marin-Jimenez.

Ethics declarations

Funding

This project was supported by the Ministry of Economy, Industry and Competitiveness in the 2017 call for R&D Projects of the State Program for Research, Development and Innovation Targeting the Challenges of the Company; National Plan for Scientific and Technical Research and Innovation 2013–2016 (DEP2017-88043-R); and the Regional Government of Andalusia and University of Cadiz: Research and Knowledge Transfer Fund (PPIT-FPI19).

Conflict of interest

Magdalena Cuenca-Garcia, Nuria Marin-Jimenez, Alejandro Perez-Bey, David Sanchez-Oliva, Daniel Camiletti-Moiron, Inmaculada C. Alvarez-Gallardo, Francisco B. Ortega and Jose Castro-Piñero declare that they have no conflicts of interest relevant to the content of this review.

Ethics approval

Not applicable.

Authors’ contributions

MCG and JCP conceived the study idea. MCG led the writing of the review and carried out methodological procedures with APB, DSO and NMJ. All authors discussed the results and contributed to the final manuscript, and agreed upon the order of presentation of the authors. All authors have read and approved the final manuscript.

Data availability statement

The authors declare that all relevant data are included in the article and/or its supplementary information files.

Additional information

The original article has been updated due to Figure 2 update.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuenca-Garcia, M., Marin-Jimenez, N., Perez-Bey, A. et al. Reliability of Field-Based Fitness Tests in Adults: A Systematic Review. Sports Med 52, 1961–1979 (2022). https://doi.org/10.1007/s40279-021-01635-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01635-2

Navigation