Skip to main content
Log in

Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Many individual and team sport events require extended periods of exercise above the speed or power associated with maximal oxygen uptake (i.e., maximal aerobic speed/power, MAS/MAP). In the absence of valid and reliable measures of anaerobic metabolism, the anaerobic speed/power reserve (ASR/APR) concept, defined as the difference between an athlete’s MAS/MAP and their maximal sprinting speed (MSS)/peak power (MPP), advances our understanding of athlete tolerance to high speed/power efforts in this range. When exercising at speeds above MAS/MAP, what likely matters most, irrespective of athlete profile or locomotor mode, is the proportion of the ASR/APR used, rather than the more commonly used reference to percent MAS/MAP. The locomotor construct of ASR/APR offers numerous underexplored opportunities. In particular, how differences in underlying athlete profiles (e.g., fiber typology) impact the training response for different ‘speed’, ‘endurance’ or ‘hybrid’ profiles is now emerging. Such an individualized approach to athlete training may be necessary to avoid ‘maladaptive’ or ‘non-responses’. As a starting point for coaches and practitioners, we recommend upfront locomotor profiling to guide training content at both the macro (understanding athlete profile variability and training model selection, e.g., annual periodization) and micro levels (weekly daily planning of individual workouts, e.g., short vs long intervals vs repeated sprint training and recovery time between workouts). More specifically, we argue that high-intensity interval training formats should be tailored to the locomotor profile accordingly. New focus and appreciation for the ASR/APR is required to individualize training appropriately so as to maximize athlete preparation for elite competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weyand P, Lin J, Bundle M. Sprint performance-duration relationships are set by the fractional duration of external force application. AJP Regul Integr Comp Physiol. 2006;290:R758–65.

    Article  CAS  Google Scholar 

  2. Bundle MW, Ernst CL, Bellizzi MJ, Wright S, Weyand PG. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling. Am J Physiol Regul Integr Comp Physiol. 2006;291:1457–64.

    Article  CAS  Google Scholar 

  3. Bundle MW, Weyand PG. Sprint exercise performance: does metabolic power matter? Exerc Sport Sci Rev. 2012;40:174–82.

    Article  PubMed  Google Scholar 

  4. Sandford GN, Stellingwerff T. “ Question your categories”: the misunderstood complexity of middle-distance running profiles with implications for research methods and application. Front Sport Act Living. 2019;1:1–8.

    Article  Google Scholar 

  5. Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vV̇O2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22:27–33.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders D, Heijboer M. The anaerobic power reserve and its applicability in professional road cycling. J Sports Sci [Internet]. 2018;37:621–9. https://doi.org/10.1080/02640414.2018.1522684.

    Article  PubMed  Google Scholar 

  7. Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol. 2003;95:1955–62.

    Article  PubMed  Google Scholar 

  8. Sanders D, Heijboer M, Akubat I, Meijer K, Hesselink M. Predicting high-power performance in professional cyclists. Int J Sports Physiol Perform. 2017;12:410–3.

    Article  PubMed  Google Scholar 

  9. Sandford GN, Allen SV, Kilding AE, Ross A, Laursen PB. Anaerobic speed reserve: a key component of elite male 800-m running. Int J Sports Physiol Perform. 2019;14:501–8.

    Article  PubMed  Google Scholar 

  10. Sandford GN, Kilding AE, Ross A, Laursen PB. Maximal sprint speed and the anaerobic speed reserve domain: the untapped tools that differentiate the world’s best male 800 m runners. Sport Med [Internet]. 2019;49:843–52. https://doi.org/10.1007/s40279-018-1010-5.

    Article  Google Scholar 

  11. Lacome M, Simpson BM, Cholley Y, Lambert P, Buchheit M. Small-sided games in elite soccer: does one size fit all? Int J Sports Physiol Perform. 2018;13:568–76.

    Article  PubMed  Google Scholar 

  12. Delaney JA, Thornton HR, Burgess DJ, Dascombe BJ, Duthie GM. Duration-specific running intensities of Australian Football match-play. J Sci Med Sport. 2017;20:689–94. https://doi.org/10.1016/j.jsams.2016.11.009.

    Article  PubMed  Google Scholar 

  13. Delaney JA, Thornton HR, Pryor JF, Stewart AM, Dascombe BJ, Duthie GM. Peak running intensity of international rugby: Implications for training prescription. Int J Sports Physiol Perform. 2017;12:1039–45.

    Article  PubMed  Google Scholar 

  14. Harper DJ, Carling C, Kiely J. High-intensity acceleration and deceleration demands in elite team sports competitive match play: a systematic review and meta-analysis of observational studies. Sport Med. 2019;49:1923–47. https://doi.org/10.1007/s40279-019-01170-1.

    Article  Google Scholar 

  15. Harper DJ, Sandford GN, Clubb J, Young M, Taberner M, Rhodes D, et al. Elite football of 2030 will not be the same as that of 2020: What has evolved and what needs to evolve? Scand J Med Sci Sport. 2021;31:493–4.

    Article  Google Scholar 

  16. Nassis GP, Massey A, Jacobsen P, Brito J, Randers MB, Castagna C, et al. Elite football of 2030 will not be the same as that of 2020: Preparing players, coaches, and support staff for the evolution. Scand J Med Sci Sports. 2020;30:962–4. https://doi.org/10.1111/sms.13681.

    Article  PubMed  Google Scholar 

  17. Olaf Schumacher Y, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc. 2002;34:1029–36.

    Article  Google Scholar 

  18. Haugen T, Paulsen G, Seiler S, Sandbakk O. New records in human power. Int J Sports Physiol Perform. 2018;13:678–86.

    Article  PubMed  Google Scholar 

  19. Iaia MF, Rampinini E, Bangsbo J. High-intensity training in football. Int J Sports Physiol Perform. 2009;4:291–306.

    Article  PubMed  Google Scholar 

  20. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part II: Anaerobic energy, neuromuscular load and practical applications. Sport Med. 2013;43:927–54.

    Article  Google Scholar 

  21. Tjelta LI. The training of international level distance runners. Int J Sport Sci Coach. 2016;11:122–34.

    Article  Google Scholar 

  22. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276–91.

    Article  PubMed  Google Scholar 

  23. Hill AV. The physiological basis of athletic records. Nature. 1925;2919:544–8.

    Article  Google Scholar 

  24. Green S, Dawson B. Measurement of anaerobic capacities in humans: definitions, limitations and unsolved problems. Sport Med An Int J Appl Med Sci Sport Exerc. 1993;15:312–27.

    CAS  Google Scholar 

  25. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard.’ Physiol Rep. 2019;7:1–16.

    Article  Google Scholar 

  26. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med. 2016;48:2320–34.

    CAS  Google Scholar 

  27. Morton RH. The critical power and related whole-body bioenergetic models. Eur J Appl Physiol. 2006;96:339–54.

    Article  PubMed  Google Scholar 

  28. Saunders PU, Pyne DB, Telford RD, Hawley J. Reliability and variability of running economy in elite distance runners. Med Sci Sports Exerc. 2004;36:1972–6.

    Article  PubMed  Google Scholar 

  29. Bertucci WM, Betik AC, Duc S, Grappe F. Gross efficiency and cycling economy are higher in the field as compared with on an axiom stationary ergometer. J Appl Biomech. 2012;2:636–44.

    Article  Google Scholar 

  30. Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–62.

    Article  CAS  PubMed  Google Scholar 

  31. Dufflield R, Dawson B. Energy system contribution in track running. New Stud Athl [Internet]. 2003;18:47–56. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Energy+system+contribution+in+track+running#6

  32. Noordhof DA, De Koning JJ, Foster C. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity? Sport Med. 2010;40:285–302.

    Article  Google Scholar 

  33. Rusko H, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes. Eur J Appl Physiol Occup Physiol. 1993;66:97–101.

    Article  CAS  PubMed  Google Scholar 

  34. Nummela A. Effect of inclination on the results of the maximal anaerobic running test. Int J Sports Med. 1996;17:2.

    Google Scholar 

  35. Sandford G. Applications of the Anaerobic Speed Reserve to Elite 800m Running [Internet]. AUT University; 2018. Available from: https://openrepository.aut.ac.nz/handle/10292/12094

  36. Billat VL, Hill DW, Pinoteau J, Petit B, Koralsztein JP. Effect of protocol on determination of velocity at V̇O2 max and on its time to exhaustion. Arch Physiol Biochem. 1996;104:313–21.

    Article  CAS  PubMed  Google Scholar 

  37. Bellenger CR, Fuller JT, Nelson MJ, Hartland M, Buckley JD, Debenedictis TA. Predicting maximal aerobic speed through set distance time-trials. Eur J Appl Physiol. 2015;115:2593–8.

    Article  PubMed  Google Scholar 

  38. Lundquist M, Nelson MJ, Debenedictis T, Gollan S, Fuller JT, Larwood T, et al. Set distance time trials for predicting maximal aerobic speed in female Australian Rules Footballers. J Sci Med Sport. 2021;24:391–6. https://doi.org/10.1016/j.jsams.2020.10.002.

    Article  PubMed  Google Scholar 

  39. Sandford GN, Rogers SA, Sharma AP, Kilding AE, Ross A, Laursen PB. Implementing anaerobic speed reserve testing in the field: validation of vVO2max prediction from 1500-m race performance in elite middle-distance runners. Int J Sports Physiol Perform. 2019;14:1147–50.

    Article  PubMed  Google Scholar 

  40. Billat LV. Interval training for performance: a scientific and empirical practice. Sport Med [Internet]. 2001;31:75–90. https://doi.org/10.2165/00007256-200131020-00001.

    Article  CAS  Google Scholar 

  41. Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol. 2005;288:R956–65.

    Article  CAS  PubMed  Google Scholar 

  42. Buchheit M, Laursen PB. Dr. Boullosa’s forgotten pieces don’t fit the puzzle. Sport Med. 2014;44:1171–5.

    Article  Google Scholar 

  43. Buchheit M, Hader K, Mendez-Villanueva A. Tolerance to high-intensity intermittent running exercise: Do oxygen uptake kinetics really matter? Front Physiol. 2012;3:1–13.

    Article  Google Scholar 

  44. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sport Med. 2013;43:313–38.

    Article  Google Scholar 

  45. Huygaerts S, Cos F, Cohen DD, Calleja-González J, Guitart M, Blazevich AJ, et al. Mechanisms of hamstring strain injury: interactions between fatigue. Muscle Activ Funct Sports. 2020;8:65.

    Google Scholar 

  46. Girard O, Millet GP, Micallef JP. Mechanical alterations during 800-m self-paced track running. Int J Sports Med. 2017;38:314–21.

    Article  PubMed  Google Scholar 

  47. Kiely J, Collins DJ. Uniqueness of human running coordination: The integration of modern and ancient evolutionary innovations. Front Psychol. 2016;7:2.

    Article  Google Scholar 

  48. Sandford G, Kilding A, Ross A, Laursen P. Maximal sprint speed and the anaerobic speed reserve domain; the untapped tools that differentiate the world’s best 800m runners. Sport Med. 2019;49:843–52.

    Article  Google Scholar 

  49. Impellizzeri FM, Rampinini E, Maffiuletti NA, Castagna C, Bizzini M, Wisløff U. Effects of aerobic training on the exercise-induced decline in short-passing ability in junior soccer players. Appl Physiol Nutr Metab. 2008;33:1192–8.

    Article  CAS  PubMed  Google Scholar 

  50. Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43:2161–70.

    Article  PubMed  Google Scholar 

  51. Hodgson MD, Keir DA, Copithorne DB, Rice CL, Kowalchuk JM. Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function. J Appl Physiol. 2018;2:2.

    Google Scholar 

  52. Fitts R. Cellular mechanisms of skeletal muscle fatigue. Physiol Rev. 1994;2:48–75.

    Google Scholar 

  53. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: Cellular mechanisms. Physiol Rev. 2008;88:287–332.

    Article  CAS  PubMed  Google Scholar 

  54. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol. 2008;103:411–9.

    Article  PubMed  Google Scholar 

  55. Schiaffino S, Reggiani C. Fiber types in Mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.

    Article  CAS  PubMed  Google Scholar 

  56. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol. 2017;58:14–7.

    Article  Google Scholar 

  57. Grassi B, Rossiter HB, Zoladz J. Skeletal muscle fatigue and decreased efficiency. Exerc Sport Sci Rev. 2015;42:75–83.

    Article  Google Scholar 

  58. Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol. 2012;113:215–23.

    Article  PubMed  Google Scholar 

  59. Grassi B, Porcelli S, Salvadego D, Zoladz JA. Slow V̇O2kinetics during moderate-intensity exercise as markers of lower metabolic stability and lower exercise tolerance. Eur J Appl Physiol. 2011;111:345–55.

    Article  PubMed  Google Scholar 

  60. Billat V, Koralsztein J. Significance of the velocity at VO2max and time to exhaution at this velocity. Sport Med. 1996;22:90–108.

    Article  CAS  Google Scholar 

  61. Smith TP, Coombes JS, Geraghty DP. Optimising high intensity treadmill training using the running speed at maximal o2 uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337–43.

    Article  PubMed  Google Scholar 

  62. Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70:683–7.

    Article  CAS  PubMed  Google Scholar 

  63. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sport. 2000;29:373–86.

    CAS  Google Scholar 

  64. Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24.

    Article  PubMed  Google Scholar 

  65. Ingham SA, Whyte GP, Pedlar C, Bailey DM, Dunman N, Nevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40:345–50.

    Article  PubMed  Google Scholar 

  66. Buchheit M, Mendez-Villanueva A. Changes in repeated-sprint performance in relation to change in locomotor profile in highly-trained young soccer players. J Sports Sci. 2014;32:1309–17.

    Article  PubMed  Google Scholar 

  67. Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness. 2008;48:65–75.

    CAS  PubMed  Google Scholar 

  68. Bex T, Baguet A, Achten E, Aerts P, De Clercq D, Derave W. Cyclic movement frequency is associated with muscle typology in athletes. Scand J Med Sci Sport. 2017;27:223–9.

    Article  CAS  Google Scholar 

  69. Baguet A, Everaert I, Hespel P, Petrovic M, Achten E, Derave W. A new method for non-invasive estimation of human muscle fiber type composition. PLoS ONE. 2011;6:1–6.

    Article  CAS  Google Scholar 

  70. Andersen LL, Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96:46–52.

    Article  PubMed  Google Scholar 

  71. van der Zwaard S, van der Laarse WJ, Weide G, Bloemers FW, Hofmijster MJ, Levels K, et al. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J. 2018;32:2110–23.

    Article  PubMed  Google Scholar 

  72. Ross A, Leveritt M, Riek S. Neural influences on sprint running. Sport Med. 2001;31:409–25.

    Article  CAS  Google Scholar 

  73. Lievens E, Klass M, Bex T, Derave W. Muscle fiber typology substantially influences time to recover from high-intensity exercise. J Appl Physiol. 2020;128:648–59.

    Article  CAS  PubMed  Google Scholar 

  74. Bellinger P, Desbrow B, Derave W, Eline L, Irwin C, Sabapathy S, et al. Muscle fiber typology is associated with the ovvereaching response to overload training. J Appl Physiol. 2020;2:2.

    Google Scholar 

  75. Lievens E, Bellinger P, Van VK, Vancompernolle J, Bex T, Minihan C, et al. Muscle typology of world-class cyclists across various disciplines and events. Med Sci Sport Exerc. 2021;53:816–24.

    Article  CAS  Google Scholar 

  76. Julio UF, Panissa VLG, Paludo AC, Alves ED, Campos FAD, Franchini E. Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity. Eur J Sport Sci. 2020;20:166–73.

    Article  PubMed  Google Scholar 

  77. Buchheit M, Hader K, Mendez-Villanueva A. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter? Front Exerc Physiol. 2012;2:406.

    Google Scholar 

  78. Mendez-Villanueva A, Buchheit M, Kuitunen S, Poon TK, Simpson B, Peltola E. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Pediatr Exerc Sci. 2010;22:497–510.

    Article  PubMed  Google Scholar 

  79. Bourne ND. Fast science: A history of training theory and methods for elite runners through 1975. PhD Thesis. 2008;1–499.

  80. Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sport Med. 2014;44:1113–24.

    Article  Google Scholar 

  81. Vollaard NBJ, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106:1479–86.

    Article  PubMed  Google Scholar 

  82. Gaskill SE, Serfass RC, Bacharach DW, Kelly JM. Responses to training in cross-country skiers. Med Sci Sports Exerc. 1999;31:1211–7.

    Article  CAS  PubMed  Google Scholar 

  83. Sylta Ø, Tønnessen E, Hammarström D, Danielsen J, Skovereng K, Ravn T, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48:2165–74.

    Article  PubMed  Google Scholar 

  84. Haugen T, Seiler S, Sandbakk Ø, Tønnessen E. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sport Med. 2019;5:44.

    Google Scholar 

  85. Krustrup P, Söderlund K, Mohr M, González-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch - Eur J Physiol. 2004;449:56–65.

    Article  CAS  Google Scholar 

  86. Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of V̇o2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43:2046–62.

    Article  PubMed  Google Scholar 

  87. Henneman E. The size-principle: a deterministic output emerges from a set of probabilistic connections. J Exp Biol. 1985;115:105–12.

    Article  CAS  PubMed  Google Scholar 

  88. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol. 1985;58:14–7.

    Article  CAS  PubMed  Google Scholar 

  89. Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2(10):e348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Paquette M, Bieuzen F, Billaut F. sustained muscle deoxygenation vs. sustained high VO 2 during high-intensity interval training in sprint Canoe-Kayak. Front Sports Act Living. 2019;1:1–9.

    Article  Google Scholar 

  91. Ufland P, Ahmaidi S, Buchheit M. Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. Int J Sports Med. 2013;34:924–30.

    Article  CAS  PubMed  Google Scholar 

  92. Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sport. 2010;20:11–23.

    Article  Google Scholar 

  93. Jones A, Carter H. The effect of endurance training on parameters of aerobic fitness. Sport Med. 2000;29:373–86.

    Article  CAS  Google Scholar 

  94. Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of VO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22:27–33.

    Article  CAS  PubMed  Google Scholar 

  95. Buchheit M. The 30–15 intermittent fitness test: 10 year review. Myorobie J. 2010;1:1–9.

    Google Scholar 

  96. Duffield R, Bishop D. V̇O2 responses to running speeds above V̇O2max. Int J Sports Med. 2008;29:494–9.

    Article  CAS  PubMed  Google Scholar 

  97. Mallol M, Bentley DJ, Norton L, Norton K, Mejuto G, Yanci J. Comparison of reduced-volume high-intensity interval training and high-volume training on endurance performance in triathletes. Int J Sports Physiol Perform. 2019;2:239–45.

    Article  Google Scholar 

  98. Munoz I, Seiler S, Alcocer A, Carr N, Esteve-Lanao J. Specific intensity for peaking: Is race pace the best option? Asian J Sports Med. 2015;6:2.

    Article  Google Scholar 

  99. Paquette M, Le Blanc O, Lucas SJE, Thibault G, Bailey DM, Brassard P. Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes. Scand J Med Sci Sport. 2017;27:318–26.

    Article  CAS  Google Scholar 

  100. Sousa A, Vilas-boas JP, Fernandes RJ, Figueiredo P. VO2 at maximal and supramaximal intensities: lessons to high-intensity interval training in swimming. Int J Sports Physiol Perform. 2017;2:872–7.

    Article  Google Scholar 

  101. Petré H, Löfving P, Psilander N. The effect of two different concurrent training programs on strength and power gains in highly-trained individuals. J Sports Sci Med. 2018;17(2):167–73.

    PubMed  PubMed Central  Google Scholar 

  102. Buchheit M. The 30–15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22:365–74.

    Article  PubMed  Google Scholar 

  103. Mytton GJ, Archer DT, Turner L, Skorski S, Renfree A, Thompson KG, et al. Increased variability of lap speeds: differentiating medalists and nonmedalists in middle-distance running and swimming events. Int J Sports Physiol Perform. 2015;10:369–73.

    Article  PubMed  Google Scholar 

  104. Sandford GN, Day BT, Rogers SA. Racing fast and slow: defining the tactical behavior that differentiates medalists in elite men’s 1,500 m championship racing. Front Sport Act Living. 2019;14:1–43.

    Google Scholar 

  105. Sandford GN, Pearson S, Allen SV, Malcata RM, Kilding AE, Ross A, et al. Tactical behaviors in men’s 800-m olympic and world-championship medalists: a changing of the guard. Int J Sports Physiol Perform. 2018;13:246–9.

    Article  PubMed  Google Scholar 

  106. Thiel C, Foster C, Banzer W, De Koning J. Pacing in Olympic track races: competitive tactics versus best performance strategy. J Sports Sci. 2012;30:1107–15.

    Article  PubMed  Google Scholar 

  107. Enomoto Y, Kadono H, Suzuki Y, Chiba T, Koyama K. Biomechanical analysis of the medalists in the 10,000 metres at the 2007 World Championships in Athletics. New Stud Athl [Internet]. 2008;61–6. Available from: http://www.athleticsnovascotia.ca/images/Coaching/endurance/bma10k2007.pdf

  108. Konings MJ, Noorbergen OS, Parry D, Hettinga FJ. Pacing behaviour and tactical positioning in 1500m short track speed skating. Int J Sports Physiol Perform. 2016;11:122–9.

    Article  PubMed  Google Scholar 

  109. Peiffer JJ, Abbis CR, Haakonssen EC, Mensapa P. Sprinting for the win; distribution of power output in women’s professional cycling. Int J Physiol Perform. 2018;2:2.

    Google Scholar 

  110. Etxebarria N, Ingham SA, Ferguson RA, Bentley DJ, Pyne DB. Sprinting after having sprinted: prior high-intensity stochastic cycling impairs the winning strike for gold. Front Physiol. 2019;10:1–7.

    Article  Google Scholar 

  111. Bellinger P, Derave W, Lievens E, Kennedy B, Arnold B, Rice H, et al. Determinants of last lap speed in paced and maximal 1500-m time trials. Eur J Appl Physiol. 2021;121:525–37. https://doi.org/10.1007/s00421-020-04543-x.

    Article  PubMed  Google Scholar 

  112. Malone S, Owen A, Mendes B, Hughes B, Collins K, Gabbett TJ. High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? J Sci Med Sport. 2018;21:257–62.

    Article  PubMed  Google Scholar 

  113. Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload–injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019;22:29–34. https://doi.org/10.1016/j.jsams.2018.01.010.

    Article  PubMed  Google Scholar 

  114. Buchheit M, Simpson BM, Mendez-Villanueva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J Sports Med. 2013;34:40–8.

    CAS  PubMed  Google Scholar 

  115. Altmann S, Neumann R, Woll A, Härtel S. Endurance Capacities in Professional Soccer Players: Are Performance Profiles Position Specific? Front Sport Act Living. 2020;2:2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth N. Sandford.

Ethics declarations

Author contributions

GNS conceived the idea for the article, wrote the first draft of the manuscript and all versions after. MB and PL contributed substantially to the content, conceptual direction and editing of the manuscript. All authors read and approved the final manuscript.

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Paul Laursen and Martin Buchheit are co-owners of HIIT Science Inc., an online educational platform that teaches the science and application of high-intensity interval training. Gareth Sandford has no conflict of interest relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandford, G.N., Laursen, P.B. & Buchheit, M. Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions. Sports Med 51, 2017–2028 (2021). https://doi.org/10.1007/s40279-021-01523-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01523-9

Navigation